PHYSIOLOGIC CHANGES OF PREGNANCY

John G. Gianopoulos, M.D.

I. INTRODUCTION

"During pregnancy, multiple physiologic adjustments are made to maintain maternal hemostasis. In a non-pregnant patient, many of these alterations would be considered pathologic rather than physiologic. This lecture will present the adjustments and alterations in maternal physiology."

MATERNAL PHYSIOLOGY

II. CARDIOVASCULAR

- A. Cardiac Output is \uparrow during pregnancy . 1.5l/min.
 - Cardiac Output = heart rate x stroke volume.
 CO = HR x SV
 - 2. Output can be measured using direct Fick method, i.e.:

Output of L. ventricle =
$$\underline{0}_2$$
 consumption (ml/min)
 A_{02} - V_{02}

- 3. Pulse rate ↑ from 70 85
 - a. Heart rate ↑ by catecholamines
 - (1) Chronotropic
 - (2) Inotropic
- 4. Stroke volume increases . 10%. Regulated by 2 mechanisms.
 - a. Heterometric
 - b. Homometric
- 5. \spadesuit CO, by \spadesuit SV = \spadesuit heart size
- B. Mean arterial pressure average pressure throughout cardiac cycle decreased.
- C. Total peripheral resistance dependent upon arteriole diameter ie., small changes in caliber = large changes in TRP.

$$R = \bigwedge_{\pi r^4} \frac{hL}{\pi r^4}$$

During pregnancy TPR is reduced.

- D. Increased blood flow distribution.
 - 1. Uterus*
 - 2. Kidney
 - 3. Skin
 - 4. Breasts
- E. Pulmonary Pressure same as non-pregnant levels, due to:

 - 2. ↑ volume capacitance
 - *3. RADIOGRAPHIC APPEARANCE increased vascularity, enlarged pulmonary vessels.

- F. Venous Pressure - ↑ in femoral pressure:
 - 1. Weight of uterus of illac veins, inf. vena cava.
 - 2. Hydrodynamic obstruction - due to ↑ uterine outflow.
 - *3 SUPINE HYPOTENSIVE SYNDROME
- G. ECG Changes - elevation of diaphragm heart moved upwards and rotated forward, + enlarged. Therefore, one would predict change in the electrical axis of the heart. Deviation to the left in the electrical axis (15-28E).
- H. Volume and Composition of Blood.
 - ↑ Plasma volume 40-50%. 1.
 - ↑ RBC 25-30%. Hematocrit 2.
 - 3.
 - **↑** WBC 4.
 - 5. ♠ Fibrinogen
 - ♠ Sedimentation rate 6.
 - ↑ Clotting Factors (VII, VIII, IX, X) 7.
 - ↑ Serum alkaline phosphatase 8.

III. RESPIRATION

- Α. Definitions
 - 1. Tidal volume (TV) - amount of air moving into lungs with each inspiration.
 - 2. Inspiratory Reserve Volume (IRV) - air inspired with maximal inspiratory effort in excess of tidal volume.
 - 3. Expiratory Reserve Volume (ERV) - volume expelled by active expiratory effort after passive expiration.
 - Residual Volume (RV) air left in lungs after maximal expiratory effort. 4.
 - 5. Vital Capacity - greatest amount of air that can be expired after maximal inspiratory effort. (timed vital capacity)
 - 6. Respiratory Minute Volume (RMV) - amount of air inspired/minute.
 - 7. Maximal Voluntary Ventilation - maximal amount of air that can be moved into and out of the lungs in one minute by voluntary effort.
- B. During pregnancy the following occurs:
 - 1. **↑**TV
 - 2. ↑ RMV - 40%
 - hyperventilation a.
 - b. respiratory alkalosis - compensated
 - ♣ alveolar CO₂ 40mm Hg 30mm Hg C.
 - ↑ sensitivity of brain stem respiratory centers to pCO₂ progesterone. d.

IV. RENAL

- A. Physiologic Changes:
 - 1. Renal Plasma Flow (RPF) equals the amount of a substance excreted/unit of time divided by renal arteriovenous difference. (PAH, DIODRAST)

$$RPF = U[x]V$$

$$P[x]$$

Renal blood flow = RPF x 1

1-hematocrit

RPF is raised throughout pregnancy by 200-250 ml/1-min.

2. Glomerular Filtration Rate (GRF) - of the plasma perfusing the glomeruli - about 20% reaches the tubular system of the kidney as an ultrafiltrate - i.e., GFR.

$$GFR = \underbrace{U [x] V}_{P [x]} = Clearance$$

- 3. Tubular Function:
 - a. Na+ Excretion progesterone inhibits reabsorption, however, increasing aldosterone levels counteract this effect.
 - b. H_20 = although plasma osmolality is Ψ and ECF \uparrow , urine volumes are similar to non-pregnant volumes. Hypothalamic resetting of osmoreceptors.
 - c. Glycosuria normal in pregnancy.
 - d. Aminoaciduria due to high circulating levels of cortisol?

- 6. ♠ erythropoietin
- V. <u>GASTROINTESTINAL</u> Decreased motility, delayed absorption ♥ gastric secretion, ♥ tone of cardiac sphincter (reflex esophagitis).

VI. ENDOCRINE

- A. Steroids:
 - 1. Progesterone corpus luteum, fetal-placental unit.
 - a. hyperpolarization of smooth muscle membrane potential ♥ tone.
 - b. temperature
 - c. respiratory rate
 - d. combined actions
 - e. breast development
 - 2. Estrogens ovarian, fetal-lacental unit.
 - a. combined actions with progesterone
 - b. connective tissue effects
 - c. liver binding globulins \uparrow , serum enzymes \uparrow .
- B. Protein Hormones:
 - 1. HCG human chorionic gonadotrophin syncytial trophoblast
 - a. corpus luteum
 - b. diagnosis of pregnancy
 - c. fetal adrenal
 - 2. hPL human placental lactogen syncytium
 - a. GH like activity like activity
 - b. diabetogenic
 - 3. HCT chorionic thyrotropin TSH like activity
- C. Pituitary Hormones:
 - 1. Anterior Lobe
 - 2. ADH, Oxytocin
- D. Adrenal Hormones:
 - Cortisol increases
 - 2. Aldosterone increases
- E. Pancreas **↑**/s cell function, placental insulinase