

Ovarian Cancer

RK Potkul MD

Mary Isabelle Caestecker Professor & Chair

Department of Obstetrics and Gynecology

Loyola University Medical Center

Disclosures

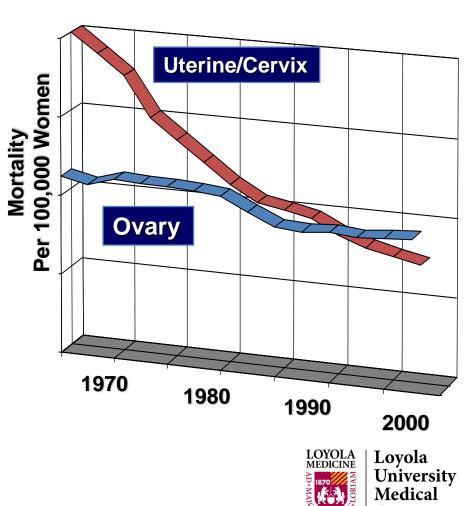
I have no actual or potential conflict of interest in relation to this program/presentation.

Discussion of Non-FDA Approved uses: none

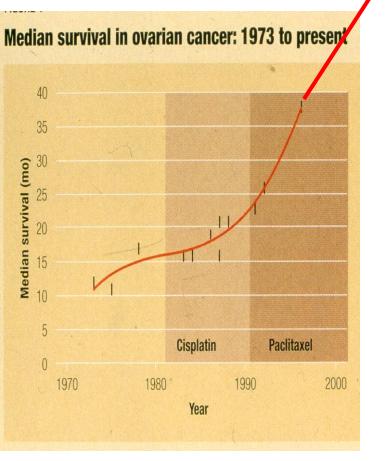
Learning Objectives

1) Review primary systemic treatment options for epithelial ovarian cancer

2) Review current indications for targeted therapy of ovarian cancer


Ovarian Cancer

- Germ Cell
- Stromal cell
- Epithelial

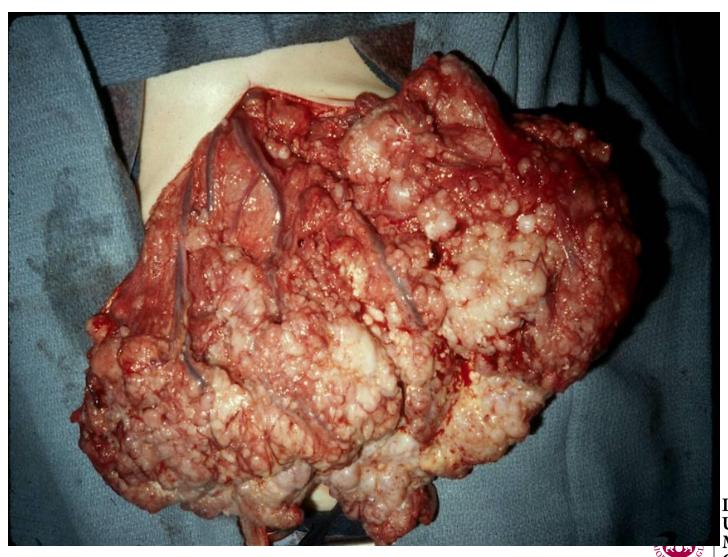

The Impact of Ovarian Cancer

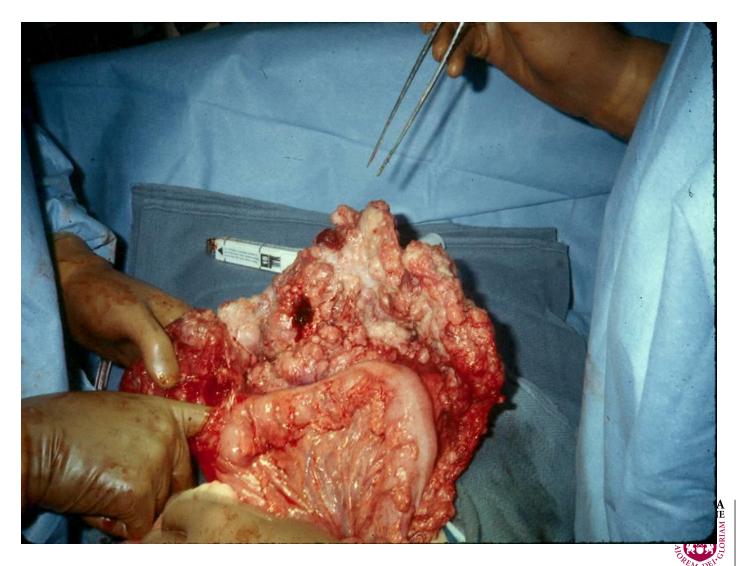
- Estimated incidence and mortality in the United States (2006)¹
 - 20,810 new cases
 - 15,310 deaths
- Approximately 6% of all cancer deaths in women
- 10-year survival: 8%—

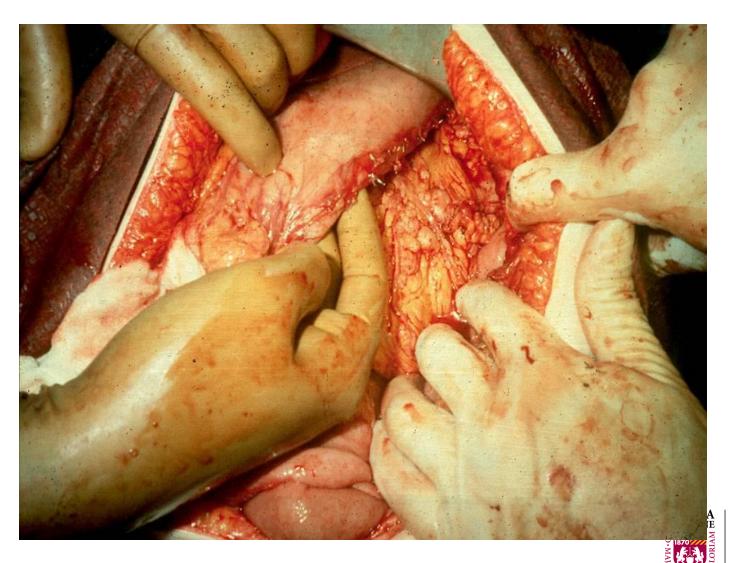

Advanced Ovarian Cancer

Study	Agent	Median Survival (Best Arm)
GOG 22 1983	Ctxn, Doxo	14.2 mo.
GOG 47 1986	Ctxn, Doxo, CDDP (CAP)	19.7 mo.
GOG 111 1996	Paclitaxel, CDDP	38 mo.
GOG 104 1996	IP CDDP	49 mo.
GOG 114 2001	IP CDDP, IP Paclitaxel	63 mo.
GOG 172 2006	IP CDDP, IP Paclitaxel	67 mo.

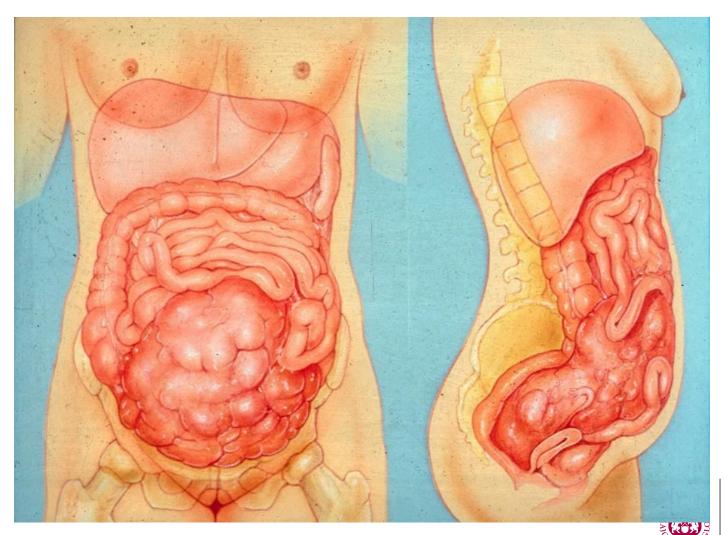
Natural History

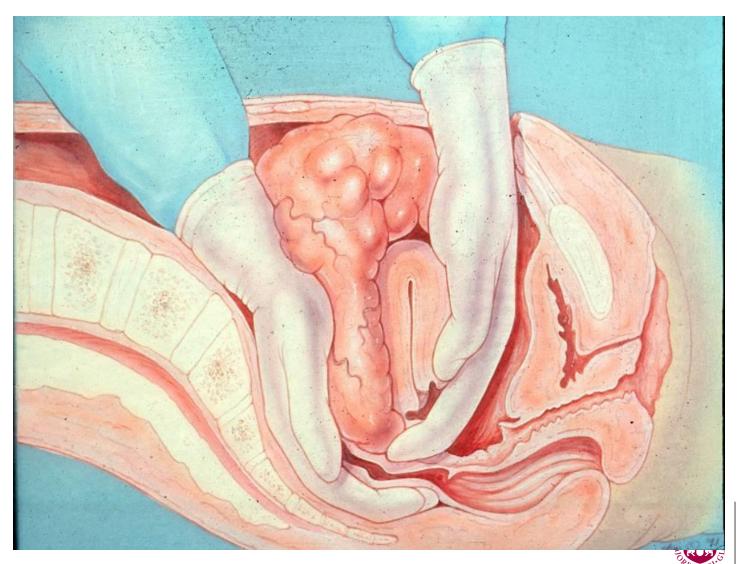


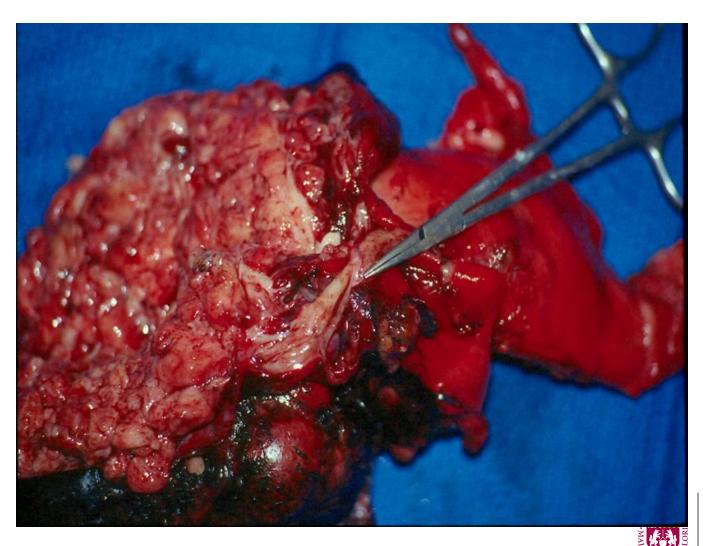


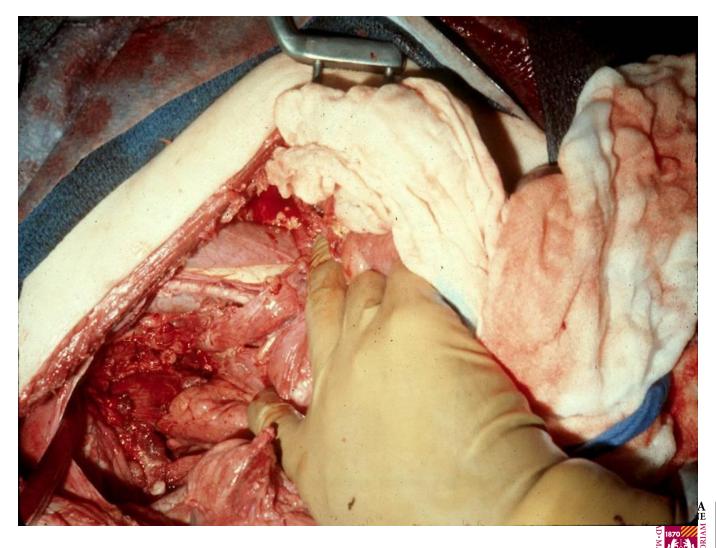

Tumor Reductive Surgery

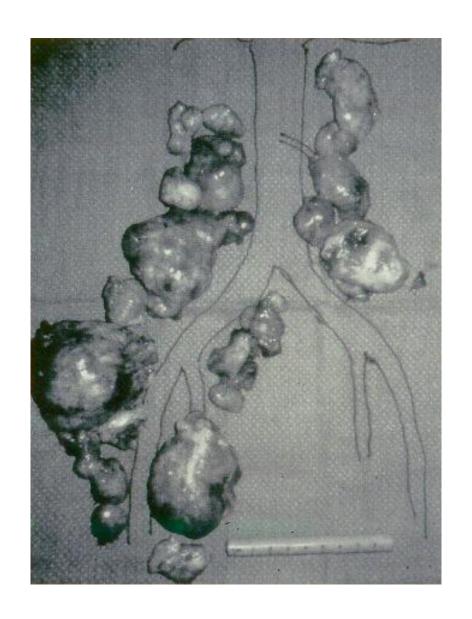
Defined not by the surgery performed or the amount of tumor removed but by how large the residual disease is.

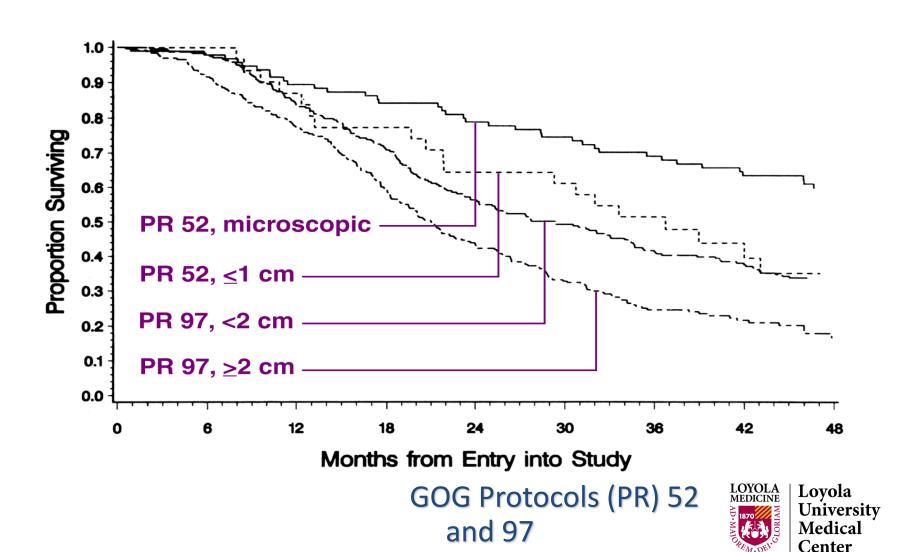












Ovarian Cancer: Survival by Residual Disease

Natural History

Neoadjuvant Chemotherapy

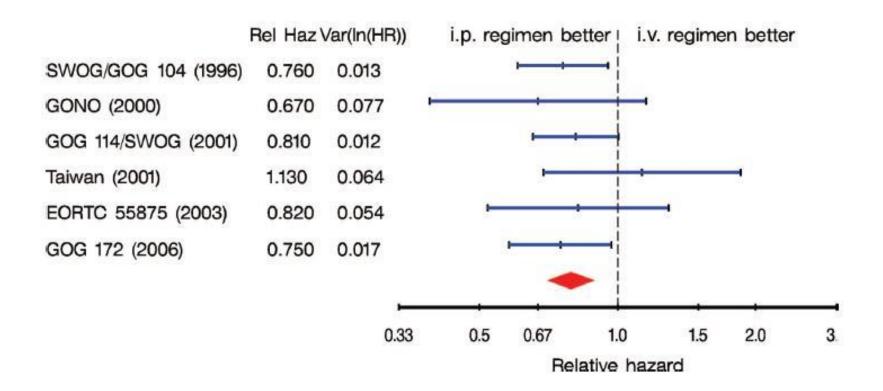
- giving pts 3-4 cycles of chemotherapy prior to debulking surgery
- Easier surgery
- Less hospital days
- Survival data mixed

Neoadjuvant Chemotherapy

- Reserved for patients unfit for primary debulking surgery
 - Poor performance status
 - Medical comorbidities
 - Widely metastatic disease that is believed to be unresectable to optimal

Drug Delivery for Ovarian Cancer: Intraperitoneal Therapy

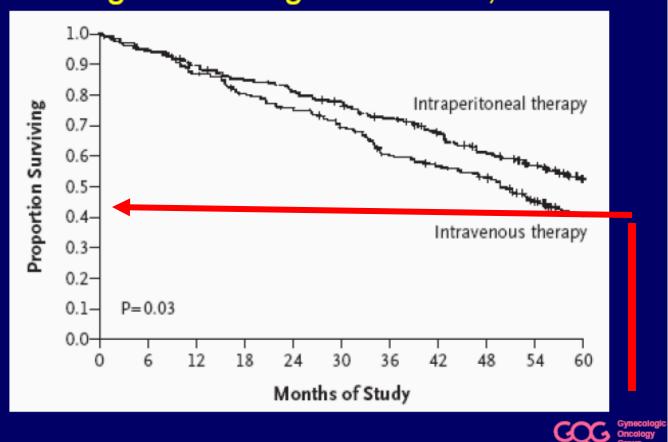
- 1950's: First use of IP for malignant ascites
- 1968: Long-term peritoneal access device
- 1978: Demonstration of slow peritoneal clearance of some drugs
- 1984: Feasibility of intermittent large volume intraperitoneal therapy
- 1996: First report of a survival benefit for IP vs. IV chemotherapy in advanced ovarian cancer



Intraperitoneal Chemotherapy

- Rationale for IP therapy
 - Ovarian cancer is an intraperitoneal disease
 - Cisplatin and Taxol have a pharmacologic advantage when given IP
 - High IP concentration of drugs
 - Longer half-life of drug IP compared to IV
 - Longer systemic exposure to chemo drugs
 - Cisplatin achieves 10 20x greater exposure IP than IV

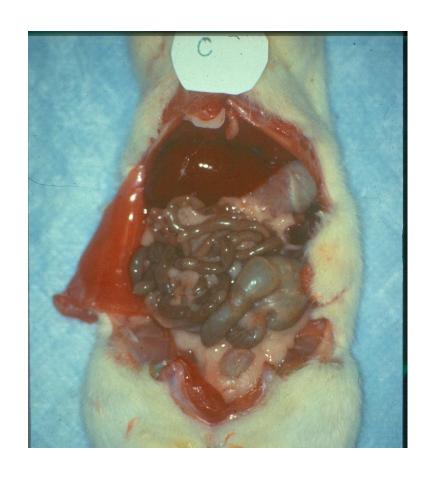
Overall Survival IP vs. IV chemo



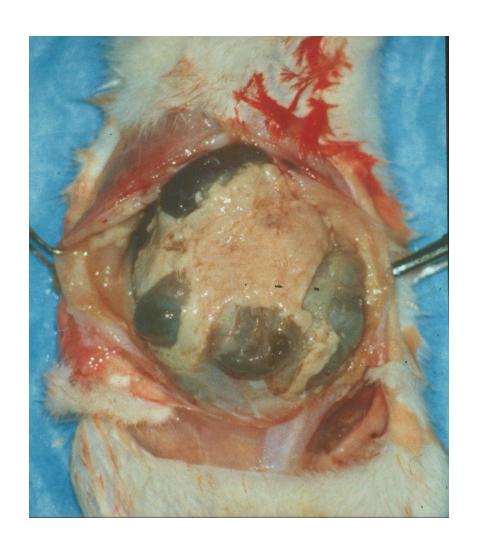
Trimble *Oncologist* 2008

GOG #172: Overall Survival

Armstrong et.al. N Engl J Med 2006;354:34-43



GOG 172: Toxicity


Grade 3/4 Toxid	city IV	/IP
Leukopenia	64%	76%
Thrombocytope	enia 4%	12%
Gastrointestina	I 24%	46%
Renal/GU	2%	7%
Neurologic	9%	19%
Fever	4%	9%
Infection	6%	16%
Fatigue	4%	18%
Metabolic	7%	\ 27% /
Pain	1%	\11%

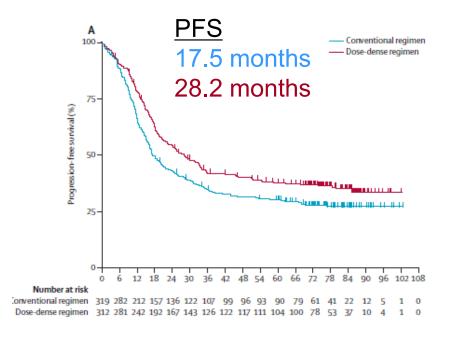
Armstrong NEJM 200

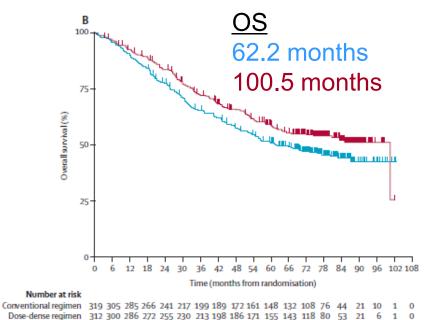
Dose-Dense Taxol

 Preclinical studies suggest that duration of exposure is an important determinant of the cytotoxic activity of paclitaxel

JGOG 3016

Stage II – IV Epithelial Ovarian Cancer


Taxol 180 mg/m² d1 Carboplatin AUC 6 d1 q 21 days x 6 cycles Taxol 80 mg/m² d1, 8, 15 Carboplatin AUC 6 d1 q 21 days x 6 cycles


Katsumata Lancet 2013

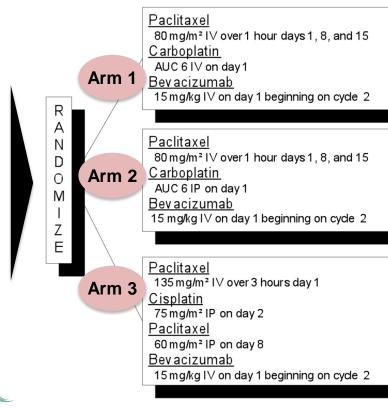
Dose Dense Taxol

JGOG 3016: Dose Dense Taxol Survival

Katsumata Lancet 2013

GOG 252: Schema

Phase A: Cycles 1-6*

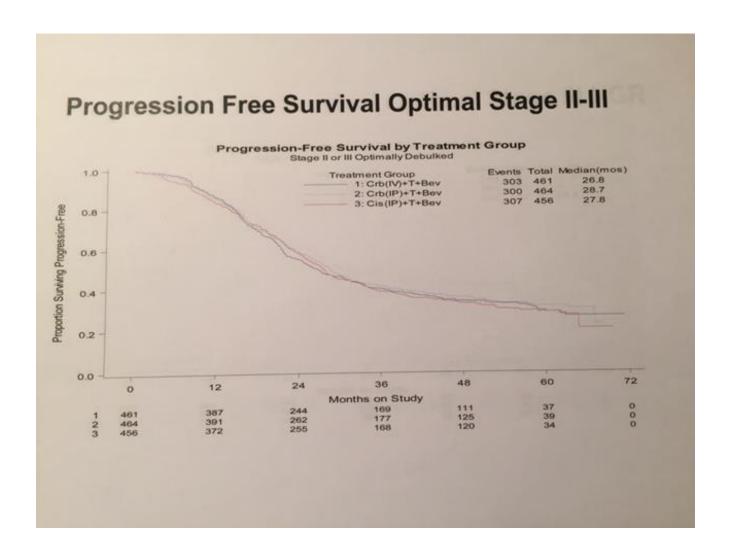

Phase B: Cycles 7-22*

Eligibility

Stage II-III Epithelial Carcinoma: Ovary, Fallopian Tube, Peritoneal

Resected to optimal: less than or equal to 1 cm visible tumor by surgeon report

Exploratory: suboptimal (7%) and Stage IV (5%)


Bev acizumab

15 mg/kg l∨ on day 1 for cycles 7-22

וווט

NCCN Guidelines Version 2.2017

Epithelial Ovarian Cancer/Fallopian Tube Cancer/ Primary Peritoneal Cancer & Less Common Histopathologies

NCCN Guidelines Index
Ovarian Cancer TOC
Discussion

PRINCIPLES OF SYSTEMIC THERAPY (3 of 8)
Primary Systemic Therapy Regimens^a
Epithelial Ovarian (including LCOH)/Fallopian Tube/Primary Peritoneal

Stage II-IV

- IP/IV Regimen (for optimally debulked stage II-III disease)
- ▶ Paclitaxel 135 mg/m² IV continuous infusion over 3 or 24 h^b Day 1; cisplatin 75–100 mg/m² IP Day 2 after IV paclitaxel; paclitaxel 60 mg/m² IP Day 8. Repeat every 3 weeks x 6 cycles. (category 1)
- IV Regimens
- ▶ Paclitaxel 175 mg/m² IV over 3 hours followed by carboplatin^c AUC 5–6 IV over 1 hour Day 1. Repeat every 3 weeks x 6 cycles. (category 1)
- Dose-dense paclitaxel 80 mg/m² IV over 1 hour Days 1, 8, and 15 followed by carboplatin^c AUC 5–6 IV over 1 hour Day 1. Repeat every 3 weeks x 6 cycles. (category 1)
- ▶ Paclitaxel 60 mg/m² IV over 1 hour followed by carboplatin AUC 2 IV over 30 minutes. Weekly for 18 weeks.d (category 1)
- ▶ Docetaxel 60–75 mg/m² IV over 1 hour followed by carboplatin^c AUC 5–6 IV over 1 hour Day 1. Repeat every 3 weeks x 6 cycles. (category 1)
- ▶ Carboplatin AUC 5 + pegylated liposomal doxorubicin 30 mg/m² every 4 weeks for 6 cycles.
- ▶ Bevacizumab-containing regimens per ICON-7 and GOG-218:
 - Paclitaxel 175 mg/m² IV over 3 hours followed by carboplatin^c AUC 5–6 IV over 1 hour, and
 - bevacizumab 7.5 mg/kg IV over 30–90 minutes Day 1. Repeat every 3 weeks x 5–6 cycles. Continue bevacizumab for up to 12 additional cycles. (category 2B)

or

Paclitaxel 175 mg/m² IV over 3 hours followed by carboplatin^c AUC 6 IV over 1 hour Day 1. Repeat every 3 weeks x 6 cycles. Starting Day 1 of cycle 2, give bevacizumab 15 mg/kg IV over 30–90 minutes every 3 weeks for up to 22 cycles. (category 2B)

Neoadjuvant Therapy

- Any of the above IV regimens can be used as neoadjuvant therapy before IDS.
- Bevacizumab-containing regimens should be used with caution before IDS due to potential interference with postoperative healing.
- After neoadjuvant therapy and IDS any of the above regimens (IV or IP/IV) can be considered as adjuvant therapy options.
- There are limited data for the use of IP chemotherapy regimens after neoadjuvant therapy and IDS. The following is an additional IP option after IDS: IV paclitaxel 135 mg/m² over 3 hours on Day 1, IP carboplatin AUC 6 IP Day 1, paclitaxel 60 mg/m² IP Day 8.6
- A minimum of 6 cycles of treatment is recommended, including at least three cycles of adjuvant therapy after IDS.

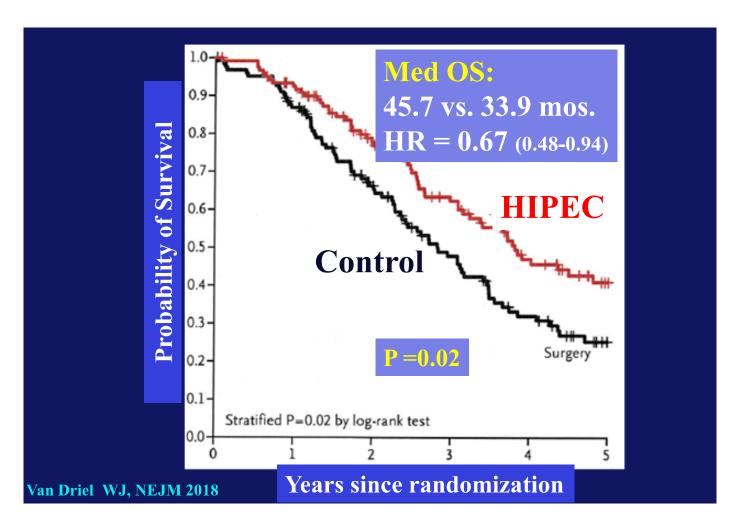
Continued

^aSee <u>Discussion</u> for references.

^bThe published randomized trial regimen used IV continuous infusion paclitaxel over 24 h.

^cDue to changes in creatinine methodology, changes regarding carboplatin dosing can be considered. See <u>FDA carboplatin dosing statement</u>.

^dThis regimen may be considered for elderly patients or those with poor performance status.

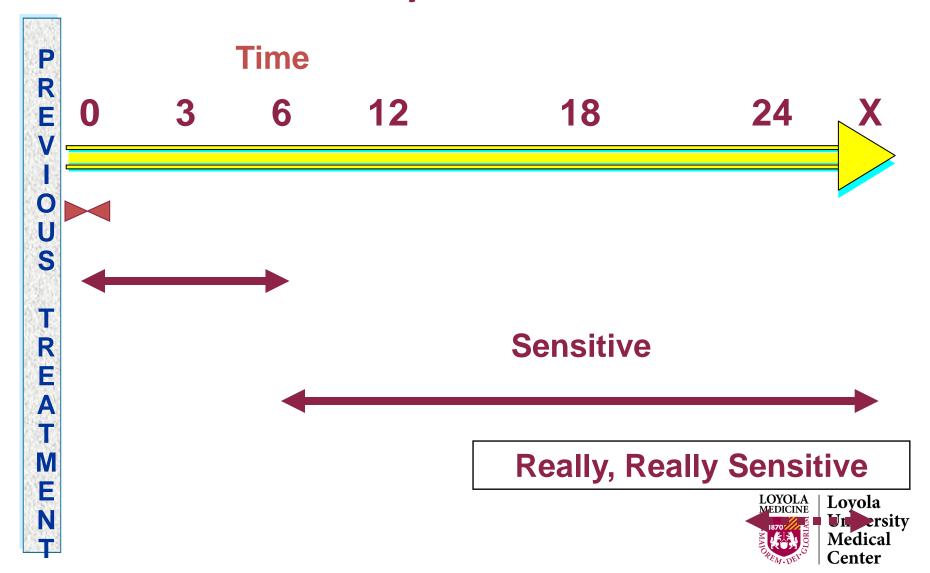

^eMackay H, Gallagher CJ, Parulekar WR, et al. OV21/PETROC: A randomized Gynecologic Cancer Intergroup (GCIG) phase II study of intraperitoneal (IP) versus intravenous (IV) chemotherapy following neoadjuvant chemotherapy and optimal debulking surgery in epithelial ovarian cancer (EOC) [abstract]. J Clin Oncol 2016;34: Abstract LBA5503.

HIPEC

- Phase III RCT, Netherlands
- 245 patients, stable disease after neoadjuvant chemotherapy (carbo/taxol)
- Interval cytoreductive surgery followed by HIPEC-cisplatin 100 mg/m²
- Followed by 3 cycles of carbo/taxol
- Primary endpoint RFS, secondary OS



HIPEC Overall Survival



Natural History

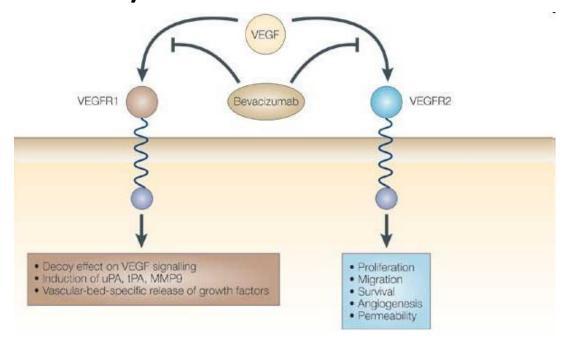
Recurrent Ovarian Cancer: Definition of Disease Sensitivity

2006 meta-analysis

- included 60 trials in women (n=15,609) with EOC
- A platinum-based combination was better than platinum monotherapy (hazard ratio [HR] favoring the combination 1.16, 95% CI 0.86-1.58)
- A platinum-taxane combination was better than a platinum plus non-taxane combination (HR favoring platinum plus taxane 1.28, 95% Cl 1.07-1.53)

J Natl Cancer Inst 2006; 98:1655.

Take Home Points: Platinum Resistant EOC


- Goal setting:
 - Incurable disease
 - Balance toxicity with efficacy
 - Maximize quality of life while attempting disease control
- Strong Consideration of Clinical trial:
 - If performance status allows
 - Platinum Resistance is a global adaption by tumor
 - Novel combinations are likely to be necessary to overcome this
 - PARPi, DDR agents, IO, anti-angiogenics, epigenetics
 - Development of functional biomarker assays needed
- Single Agent therapy:
 - Addition of Bevacizumab improves response and PFS for those eligible

Adding a Biologic Agent

Monoclonal antibody to VEGF-A that inhibits

angiogenesis

Nature Reviews | Drug Discovery

Targeting Angiogenesis:

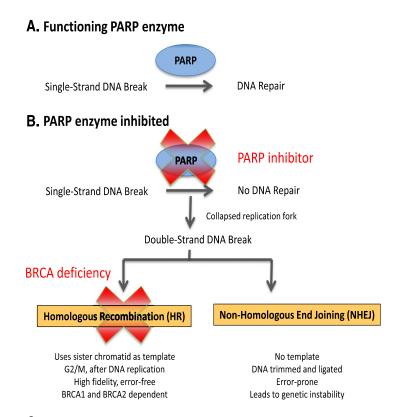
Aurelia Trial:

- Open label Phase III RCT
- 361 patients; Physician's Choice Chemo vs Chemo+ Bevacizumab
- Platinum-resistant disease
- No bowel obstruction within 6 mos, no malignant bowel involvement
- No more than 2 prior lines
 - Weekly paclitaxel 80mg/m2 (day 1, 8, 15, 22) every 4 wks
 - Pegylated Liposomal Doxirubicin 40mg/m2 every 4 wks
 - Topotecan 4mg/m2 weekly every 4 wks OR 1.25mg/m2 day 1-5 every 3 wks

Aurelia Trial:

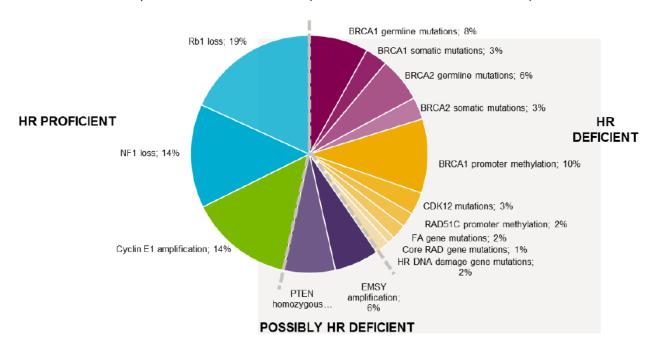
Improving chemotherapy sensitivity in platinum resistant EOC

- Physician choice chemo + bevacizumab:
 - 31% ORR vs 13% chemo alone (13.5 mos follow up)
 - Decrease recurrence HR 0.48 (CI 0.38-0.60)
 - PFS 6.7mos vs 3.6 mos
 - Grade 2 HTN, proteinuria
 - Gl perf 2.2% (4 pts)
- Impact of Bevacizumab:
 - Paclitaxel+ Bev: ORR 53% vs 30% Taxol alone
 - PFS 10 mos vs 4 mos; HR 0.46 (0.30-0.71)
 - Topo+ Bev: ORR 17% vs 0%
 - PFS 6 mos vs 2 mos HR 0.32 (0.21-0.49)
 - PLD + Bev: ORR 14% vs 8%
 - PFS 5 mos vs 4 mos (0.39-0.83)


**Not powered to discern difference between chemotherapy backbones

PARPi

- Mechanism of action works on principle of synthetic lethality
- Inherent vulnerability that when combined with a genetic event may become lethal
- HRD can happen via BRCA mutations or mutations and epigenetic changes in genes involved in HR can lead to HRD


C. Deficiency in HR and BER together lead to synthetic lethality

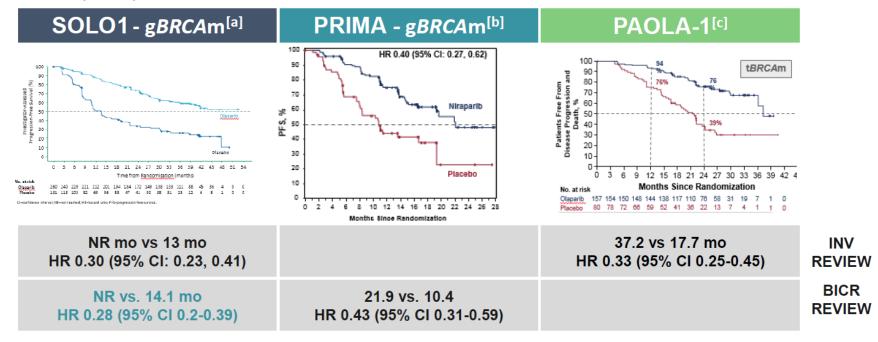
Condition	HR	BER	Outcome
Normal cells	+	+	Viable
BRCA deficient	-	+	Viable
Normal cells, PARP inhibitor	+	-	Viable
BRCA deficient, PARP inhibitor	-	-	Cell Death

Why Does PARPi Work? We know the HRD Rationale for Efficacy in treatment

General assumption 1: HR deficiency = PARP inhibitor sensitivity

Konstantinopoulos et al, Canc Disc 2015 and Patch et al, Nature 2015

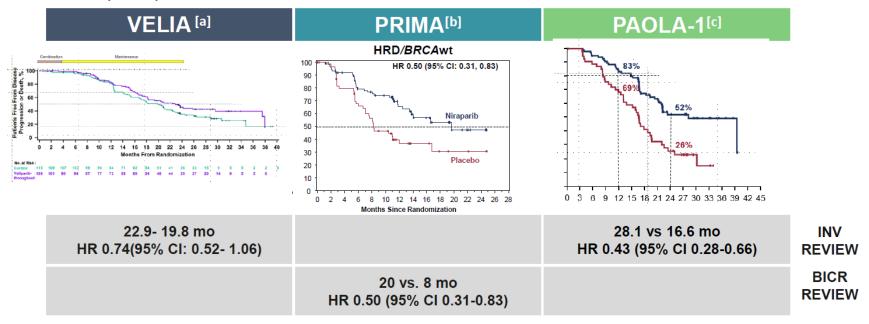
Drug	FDA Approval	Indication
Olaparib	Dec 2014	Patients with deleterious or suspected deleterious germline BRCA-mutated advanced ovarian cancer who have been treated with three or more prior lines of chemotherapy
	Aug 2017	Maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer, who are in a complete or partial response to platinum-based chemotherapy
Rucaparib	Dec 2016	Patients with deleterious BRCA mutation (germline and/or somatic) associated advanced ovarian cancer who have been treated with two or more chemotherapies
	Dec 2017 Priority review	Maintenance treatment for patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy,
Niraparib	Mar 2017	Maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in complete or partial response to platinum-based chemotherapy


Why Maintenance?

- Recurrence after clinical CR: 50-80%
- Recurrence after pathological CR: 40-60%
- Prognostic factors for recurrence:
 - Tumor burden = residual disease
 - Response to therapy = "biology"
 - Unknowns
- Cure after Recurrence: Rare

BRCAm Front Line Maintenance: 4 POSITIVE RANDOMIZED TRIALS

Primary endpoint: PFS



a. Moore K, et al. N Engl J Med. 2018;379:2495-2505. b. Gonzalez Martin A, et al. NEJM. 2019: 381(25):2391-2402. c. Ray-Coquard I, et al. NEJM. 2019: 381(25):2416-2428.

HRD+ Front Line Maintenance: 3 POSITIVE RANDOMIZED TRIALS

Primary endpoint: PFS

a. Coleman R et al. NEJM. 2019: 381 (25): 2403-2415. b. Gonzalez Martin A, et al. NEJM. 2019: 381(25):2391-2402. c. Ray-Coquard I, et al. NEJM. 2019: 381(25):2416-2428.

Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer

BRCA mutation PFS 34.7 m vs 22.0 m

HRD PFS 31.9 m vs 20.5 m

WT PFS 23.5 m vs 17.3 m

Front Line Maintenance Therapy With PARPi Should be the SOC!

- 4 Randomized Trials, all positive, why is there any controversy?
 - No OS data
 - True patients have done so well that OS is years away you want to wait?
 - Benefit of PARPi is an early effect clonality
 - HR in second line is as good or better than front line so "I'm going to wait"
 - Understand HR in context
 - · Biomarkers are key here
 - Toxicity

PARPi side effects

Adverse events noted with PARP inhibitors.

	Anemia G1-4/G3-4	Neutropenia G1-4/G3-4	Low Plts G1-4/G3-4	Fatigue G1-4/G3-4	Nausea G1-4/G3-4	Vomiting G1-4/G3-4	Diarrhea G1-4/G3-4	Elevated Cr G1-4/G3-4	Elevated LFTs G1-4/G3-4
Olaparib (phase 2; FDA label) Rucaparib (phase 3) [73]	90%/15% 37%/19%	25%/7% 18%/7%	30%/3% 28%/5%	66%/8% 69%/7%	64%/3% 75%/4%	43%/4% 37%/4%	31%/1% 32%1%	30%/2% 15%/1%	NR/NR 34%/10%
Niraparib (phase 3) [57]	50%/25%	30%/20%	61%/34%	60%/8%	74%/3%	34%/2%	19%/0%	NR	NR

Gunderson, et. Al 2018 Gyn Oncolo

DFS

 Stage I & 2 	65-90%
-------------------------------------	--------

 Stage III optimal 	40%
---------------------------------------	-----

•	Stage	III sub	optima	5-10%
---	-------	---------	--------	-------

• Stage IV 5-10%

Screening

- ***Unknown precancer condition**
- Low detection
- *** High mortality**
- No screening has yet proven to be effective

Prevention

- ***OCP**
- Tubal Ligation
- Prophylactic Salpingo-Oophorectomy

<u>OCP</u>

- *6 years of use
- *60% Reduction

Tubal Ligation

- ❖ ↓ Risk in General Population
- BRCA1 .39 (.22 .70)
- ◆ Both TL + OCP .28 (.15 -.50)

Risk of Ovarian Cancer

General Population 1.4%
BRCA1 16-60%
BRCA2 10-25%

Prophylactic Salpingo-Oophorectomy

551 Women w/ BRCA1 or 2 mutation

- *292 Control Group
 - -58 Cancers
 - **6/58 Stage I** (11%)
- *** 259 P0**
 - 6 Stage I Ovarian Ca
 - 2 Additional Peritoneal Ca
- **❖ Risk Decreased from 20% to < 1%**
- **❖ RR Breast CA .45 (.29 .77)**

3 Unanswered Issues

- 1) Optimal Time
- 2) Should Hysterectomy be included
- 3) Role of HRT

Optimal Time

- Deferred until childbearing complete
- BRCA 1 patients 11-21% CA risk by age
- Defer till > 40 may lose breast protection
- 2-4% rate of occult invasive carcinoma

Hysterectomy

- No consensus
- Should include bilateral salpingectomy
- Argue... portion of tube in uterus is at theoretical risk
- Uterine cancer not over represented in BRCA2
- Uterine cancer may be increased in BRCA1
 - **\$ (3-4%)**
- Increase morbidity

HRT Effect on Breast Cancer Reduction

Cohort of never users RR 0.42

Cohort of users & nonusers RR 0.53

