

The Coding Patient - A Modified Review Of ACLS -

Emergency Medicine Clerkship

A PART OF TRINITY HEALTH

Discussion Overview

- The Basics - Pushing, Breathing & Shocking
- Medications
- Pulseless Algorithms - AHA recommendations
- "H's & T's" - Another way of looking at them
- PoCUS
- ROSC care
- Code termination
- Bonus material - time allowing

ACLS Topics Not Covered

- Rhythms with pulses
- Acute Coronary Syndrome (ACS)
- Acute Stroke
- Brady and Tachyarrhythmias

Resources/References

- Experience
- American Health Association ACLS protocol
- REBELEM.com
- EMCrit.org
- ALIEM.com
- EMRAP podcast
- Crashingpatient.com

Who has seen an in-hospital code?

How was it run?

Office Code

■ <https://www.youtube.com/watch?v=Vmb1tqYqyII>

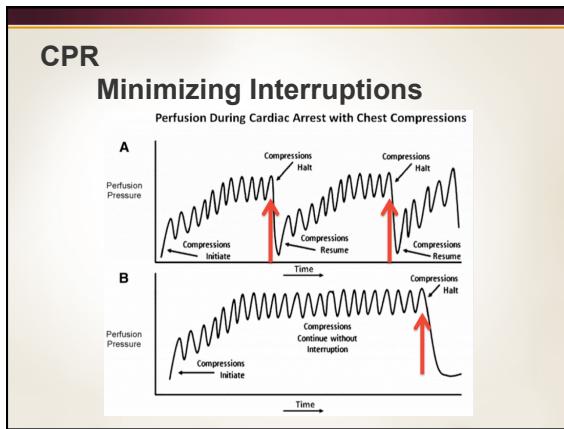
The Basics

Pushing, Breathing and Shocking

A PART OF TRINITY HEALTH

CPR Quality

How Fast?


- 100-120 bpm (level IIa rec)
- Stayin' Alive (Bee Gees)
- Another One Bites the Dust (Queen)

How Deep?

- 2-2.4" or 5-6cm (level I rec)
- Don't forget about the recoil

What Ratio?

- No advanced airway: 30-2
- Airway: Continuous compressions with ventilating every 6 seconds

CPR Tips for Minimizing Interruptions

- Compressions **DO NOT** need to be stopped during attempts at airway management
- Counting out loud during cardiac ultrasound assessments
- Skipping pulse checks in favor of watching for a bump in the end-tidal CO₂
- Rotate compressors every 2 minutes
- Team Sport
 - In game coaching, teamwork, communication
- Minimize total pre and post shock (level I rec)

Breathing – Ventilation

- How often should you "bag the patient?"
 - No airway: 30-2
 - Airway: Continuous
 - Ventilating every 6 seconds
- How much?
 - Enough to make the chest wall rise... but not the whole bag (~500cc)
- Get a good seal...
 - Until you get a good airway
 - Consider two handed
 - Other airway adjuncts

Bagging – Ventilation Intubation

Get it right the first time!

- As the number of attempts increases, the incidence of Adverse Events (AEs) increases substantially (Sakles et al 2013)
 - First attempt success = 14.2% AEs
 - Two attempts = 47.2% AEs
 - Three attempts = 63.6% AEs
 - Four or more attempts = 70.6% AEs

Sakles, John C, Stephen Chu, Jarrod Moser, Corinne Walker, and Uwe Stoltz. 2013. The importance of first pass success when performing orotracheal intubation in the emergency department. *Academic emergency medicine*: official journal of the Society for Academic Emergency Medicine, no. 1

CPR

Quality – End Tidal CO₂

■ Improve CPR if...

- PETCO₂ <10 mmHg.
 - Cardiac Output (CO) is a major determinant of CO₂ delivery to the lungs, so PETCO₂ correlates well with CO
- Relaxation Phase pressure <20 mmHg
 - Relaxation phase = Diastolic BP = surrogate for Coronary Perfusion Pressure

■ Low EtCO₂ (≤ 10) after 20 minutes of CPR is strongly associated with resuscitation failure

- Not be used in isolation
- Not be used in non-intubated patients

Shocking! – Defibrillation

- Shock Energy
 - Biphasic: Manufacturer recommendation (eg, initial dose of 120-200 J); if unknown, use maximum available.
 - Single- and biphasic doses should be equivalent, and higher doses may be considered.
 - Monophasic: 360 J

Former Loyola- Medtronic Defibrillator

200J,300J,360J

Loyola & Hines- Zoll Defibrillator

120J, 150J, 200J

Medications

Medications

“While the listed drugs have theoretical benefits in selected situations, no medication has been shown to improve long term survival in humans after cardiac arrest. Priorities are defibrillation, oxygenation and ventilation together with external cardiac compression.”

— Australian Resuscitation Council Statement

Medications

What medications do we typically think of?

- Asystole/PEA
 - Epinephrine
 - Vasopressin
 - Atropine
- V-Fib/V-tach
 - Epinephrine
 - Vasopressin
 - Amiodarone
 - Lidocaine
 - Magnesium (Torsades)

#AHA ACLS 2018 update!

Lidocaine is back! Amio or Lidocaine for VF/pVT

Medications

Epinephrine

- ACLS recommendations:

- **“CONSIDER”** epinephrine 1mg every 3-5 minutes
 - Allow for some wiggle room in the way we choose to deliver intra-arrest vasopressors.
 - But give early for non-shockable rhythm, if you are going to give it

Medications

Amiodarone

► What's the dosing?

- First dose: 300mg bolus (IV/IO)
- Second dose: 150mg bolus (IV/IO)

■ Does it work?

- Increase short-term survival to hospital admission...
- But doesn't improve long-term outcomes
- Defibrillation matters more

► If you're going to give it...

- Give early after shock to circulate them.
- Optimal time not established, but peak effect can be delayed 1-2min in cardiac arrest

Medications

Lidocaine

■ What's the dosing?

- First dose: 1-1.5 mg/kg bolus (IV/IO)
- Second dose: 0.5- 0.75 mg/kg bolus (IV/IO)

■ Does it work?

- Increase short-term survival to hospital admission...
- But doesn't improve long-term outcomes
- Defibrillation matters more

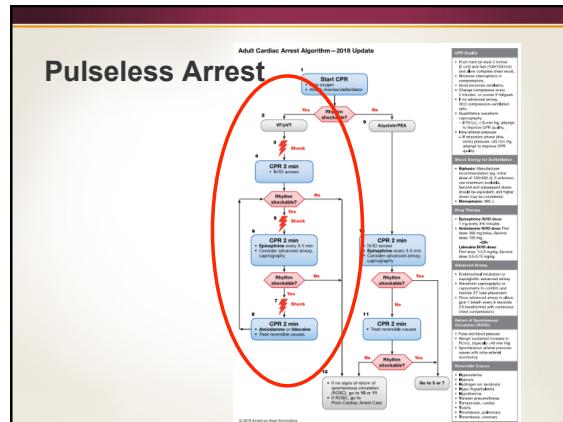
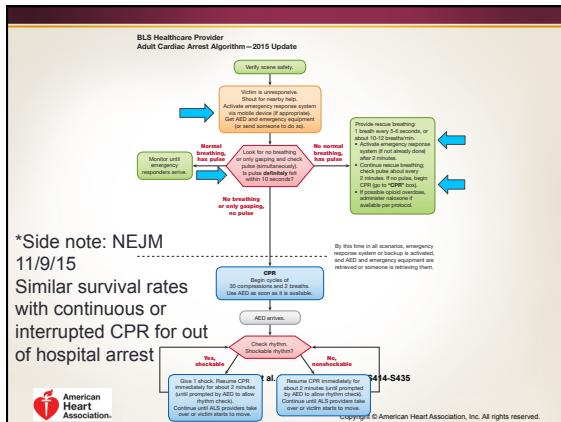
► If you're going to give it...

- Give early after shock to circulate them.
- Optimal time not established, but peak effect can be delayed 1-2min in cardiac arrest

Medications

What else do I give during codes...

Glucose



- If accucheck not done or is hypoglycemic

■ Magnesium

- If torsades, severe hypokalemia/hypomag, or digoxin toxicity

■ Calcium

▪ Bicarbonate

VT/VF

*Side note:
Give meds early after shock to circulate them

#ACLS 2015

- Shockable rhythm
- insufficient evidence to make a rec. about the optimal timing of epinephrine administration, defi b. is a major focus of resuscitation.

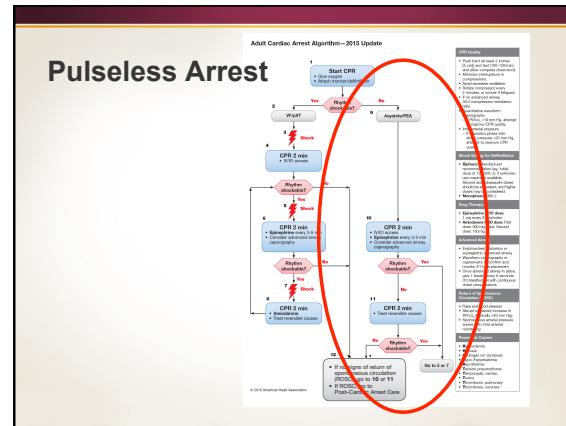
#ACLS 2018

Lidocaine is back! Amio or Lidocaine for VF/pVT

The image contains two flowcharts side-by-side. Both flowcharts start with the question 'Rhythms shockable?'.

ACLS 2015 Flowchart:

- If Yes: Shock. Then 'CPR 2 min' (with a note: 'Epinephrine every 3-5 min continues after defibrillation'). Then the question 'Rhythms shockable?' is asked again.
- If No: The question 'Rhythms shockable?' is asked again.

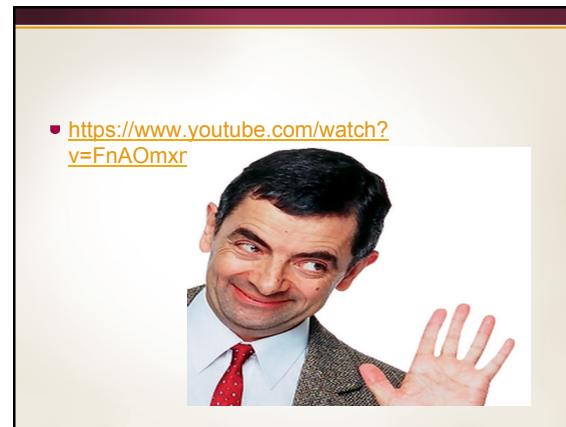

ACLS 2018 Flowchart:

- If Yes: Shock. Then 'CPR 1 min' (with a note: 'Epinephrine every 3-5 min continues after defibrillation that minimizes pauses'). Then the question 'Rhythms shockable?' is asked again.
- If No: The question 'Rhythms shockable?' is asked again.

#ACLS 2015

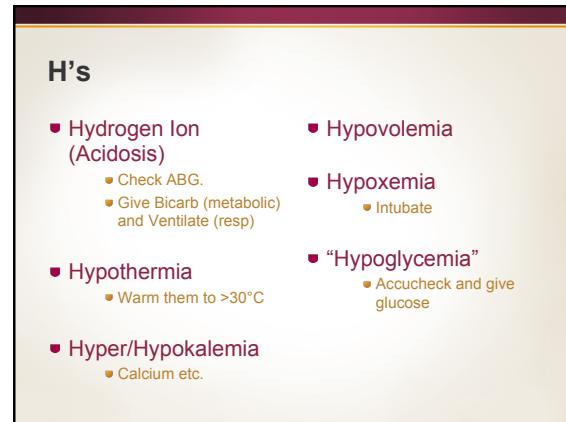
Total preshock and postshock pauses should be as short as possible I, C-LD. Target compression fraction $\geq 60\%$

*Side note:
Longer pre-shock pause independently associated with decreased survival



#ACLS2015 Nonshockable rhythm - may be reasonable to administer epinephrine as soon as feasible IIb, C-LD

```


graph TD
    A[Asystole/PEA] -- No --> B[CPR 2 min]
    A -- Yes --> C{Rhythm shockable?}
    C -- No --> D[CPR 2 min  
Best reversible causes]
    C -- Yes --> E{Rhythm shockable?}
    E -- No --> F[Out to 8 or 7]
    E -- Yes --> G[CPR 2 min  
Best reversible causes]
    G --> H[Out to 8 or 7]
    
```

• If no signs of return of spontaneous circulation (ROSC), go to 8 or 11
• If ROSC, go to Post-Cardiac Arrest Care

H's & T's

<u>H's</u>	<u>T's</u>
<ul style="list-style-type: none">■ Hydrogen Ion – Acidosis■ Hyper/Hypokalemia■ Hypothermia■ Hypovolemia■ Hypoxemia■ (Hypoglycemia)	<ul style="list-style-type: none">■ Toxins■ Tamponade – Cardiac■ Tension Pneumothorax■ Thrombosis<ul style="list-style-type: none">■ Cardiac■ Pulmonary■ (Trauma)

T's

- Toxins
 - Narcan or bicarb
 - Figure out source
 - Lengthy list
 - Consider Intralipid
- Tamponade (cardiac)
 - Diagnose with Ultrasound
 - Pericardiocentesis
- Tension PTX
 - Needle Decompression
- Thrombosis – Cardiac
 - Stabilize and get to Cath
- Thrombosis – Pulmonary
 - Lytics
- “Trauma”
 - Examine and Ultrasound Pt
 - Causes other H's & T's

Alternate Framework for H's and T's

- Chaotic to try to remember all of them
- Do we try to fix all of them?
- What's a good solution?

NEW US Based PEA Framework

PEA – EVALUATION

QRS NARROW MECHANICAL (RV) PROBLEM	QRS WIDE METABOLIC (LV) PROBLEM
<ul style="list-style-type: none"> • Cardiac tamponade • Tension PTX • Mechanical hyperinflation • Pulmonary embolism 	<ul style="list-style-type: none"> • Severe hyperkalemia • Sodium-channel blocker toxicity
ACUTE MI Myocardial rupture	AGONAL RHYTHM
BEDSIDE US: LV HYPERDYNAMIC PSEUDO-PEA	ACUTE MI Pump failure
LV HYPOKINETIC OR AKINETIC TRUE PEA	

Narrow Complex PEA Management

PEA – MANAGEMENT

QRS NARROW MECHANICAL (RV) PROBLEM	→ WIDE OPEN FLUIDS, PLUS:
<ul style="list-style-type: none"> • Cardiac tamponade • Tension PTX • Mechanical hyperinflation • Pulmonary embolism 	<ul style="list-style-type: none"> → PERICARDIOCENTESIS → NEEDLE DECOMPRESSION → VENTILATOR MANAGEMENT → THROMBOLYSIS

Wide Complex PEA Management

PEA – MANAGEMENT

PHARMACOLOGIC MANAGEMENT	← QRS WIDE METABOLIC (LV) PROBLEM
<ul style="list-style-type: none"> IV CALCIUM CHLORIDE IV SODIUM BICARBONATE BOLUSES 	<ul style="list-style-type: none"> • Severe hyperkalemia • Sodium-channel blocker toxicity

Point of Care Ultrasound (POCUS)

Ultrasound will be your friend

A PART OF TRINITY HEALTH

HI-MAP Mnemonic Device Finding Source

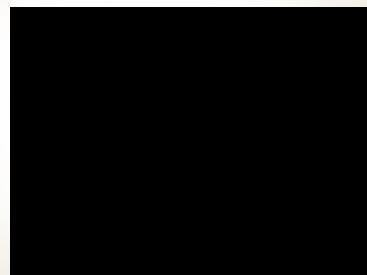
- Heart
 - Pericardial Effusion
 - Tamponade
 - RV Dilatation
 - PE
 - RV Collapse
 - Tamponade
 - PTX
 - Mechanical Hyperinflation
 - Ruptured Mitral Valve
 - MI
- Inferior Vena Cava
 - Fluid status
- Morrison's Pouch
 - Trauma
 - Ruptured Ectopic
- Aorta
 - Ruptured Aortic Aneurysm
- Pneumothorax

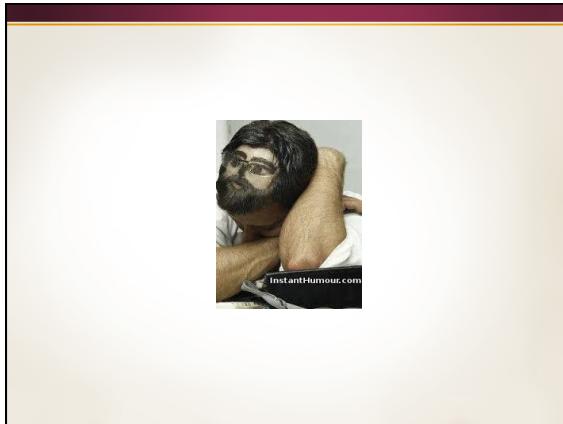
Ultrasound in Cardiac Arrest

- Alternate Framework to the H's and T's
- Assessment for the presence or absence of Cardiac Output
- Confirming ETT placement

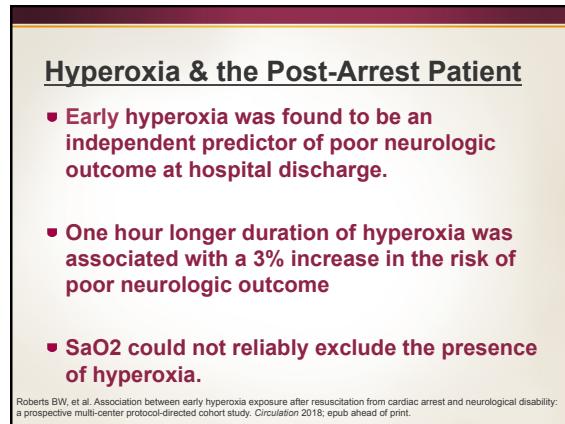
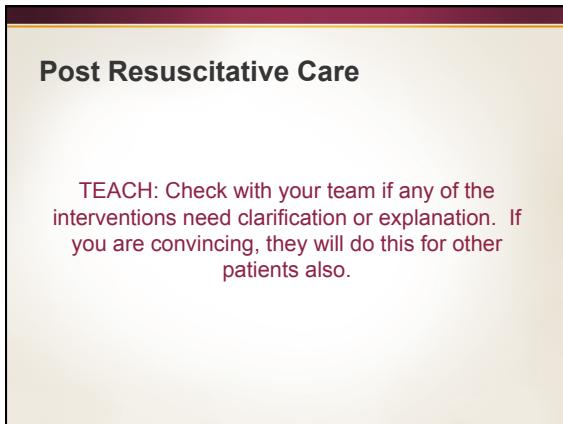
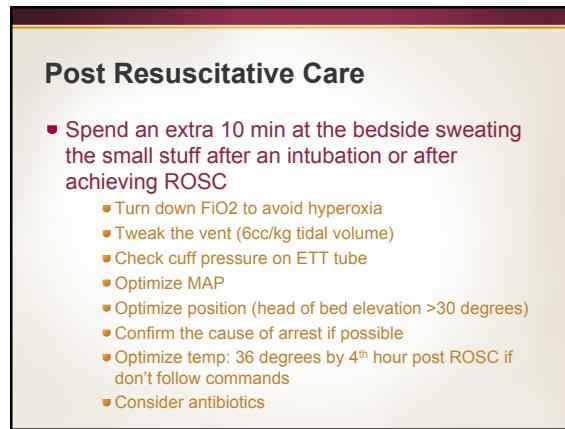
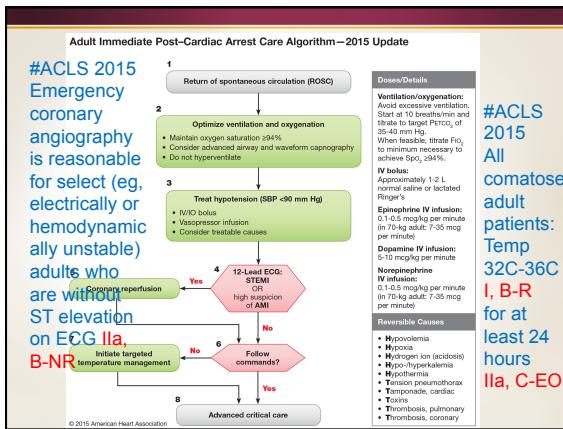
1. Assessment for the presence or absence of Cardiac Output

- How do we currently assess cardiac output during a code?
- Why is this a bad approach?
 - It's insensitive
 - It isn't specific
 - Inter-rated reliability of pulses is poor
 - Only 78% accurate


POCUS in Cardiac Arrest - CO


2. Confirming ETT placement

- How do we confirm placement?
 - Continuous waveform capnography
 - Ultrasound (qualitative EtCO₂ or EDD) was added if capnography not available





Confirming ETT with US

<https://www.youtube.com/watch?v=yNyTm3180P4>

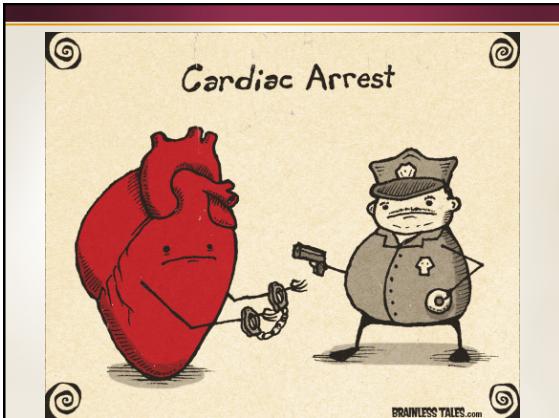
ROSC care

Antibiotics?

- AHA didn't address this but 38% of post-arrest pts were bacteremic
 - Unclear if bacteremia was cause or result of

Code termination

But There is No Advance Directive...


- There is no consensus
 - "Physicians are under no ethical obligation to render treatment that they judge have no realistic likelihood of medical benefit to the patient." -ACEP
- Assess likely outcome, based on scientific evidence
- Weigh risks and benefits of resuscitation, in conjunction with family and PCP, if available.

ETCO₂

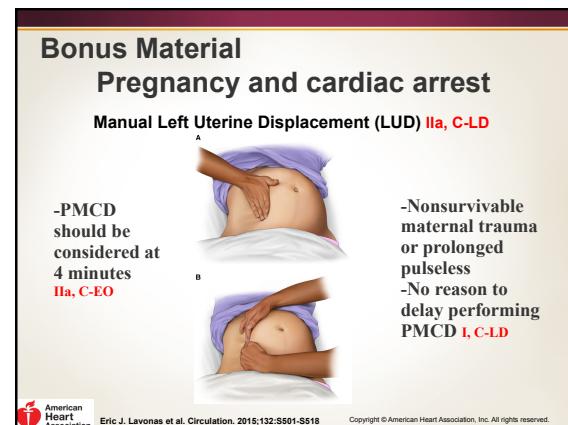
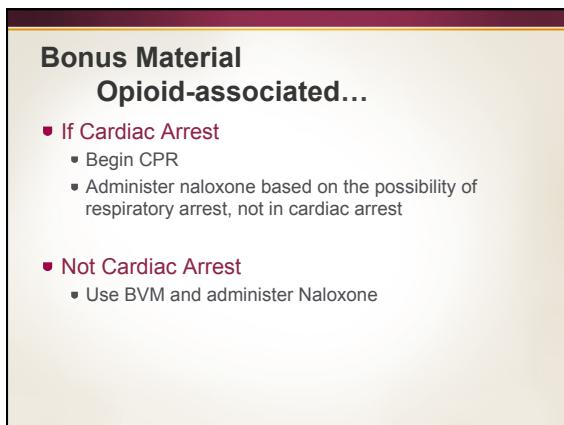
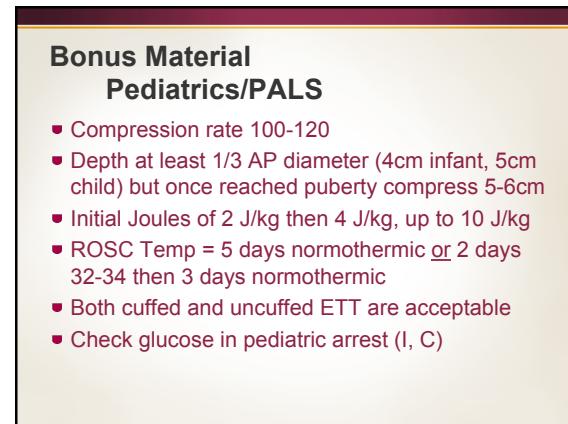
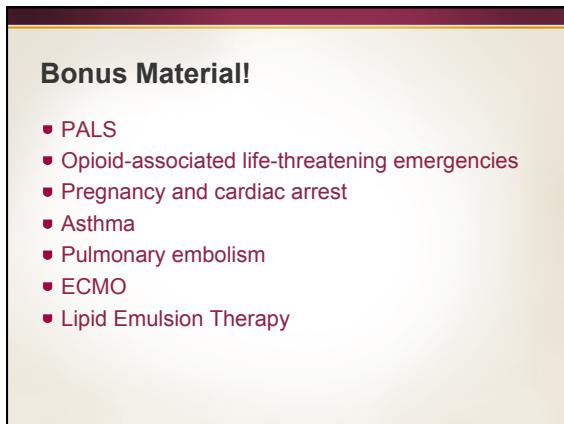
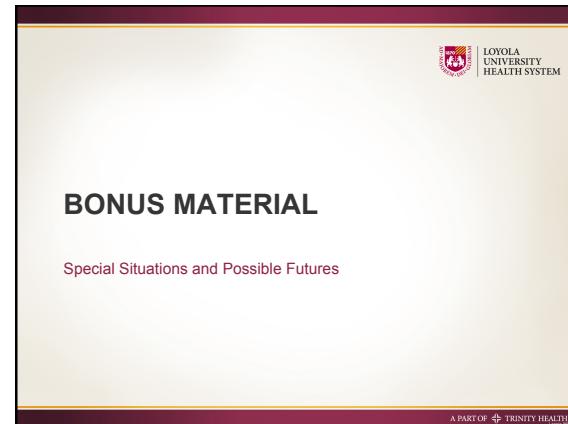
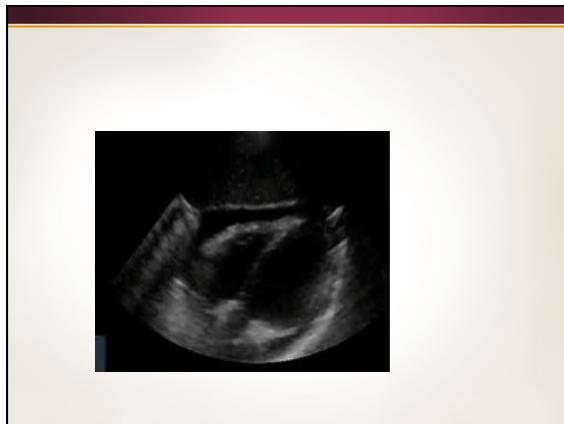
- Low EtCO₂ (≤ 10) after 20 minutes of CPR is strongly associated with resuscitation failure
 - Not be used in isolation
 - Not be used in non-intubated patients

Treat the Patient AND the Family

- Communicate with family and loved ones
- Allow family to be present during resuscitative efforts, if appropriate
- Use a multidisciplinary approach to family communication
 - Spiritual, psychosocial, and educational support

LOYOLA
UNIVERSITY
HEALTH SYSTEM

Megacode Review







A PART OF TRINITY HEALTH

- 52 yo male appears unresponsive when you check on him for morning rounds

Thank you!

- <https://www.bing.com/videos/search?q=pericardial+effusion+on+ultrasound+subxyphoid+view&view=detail&mid=B2BABAB645AF2314084B2BABAB645AF2314084&FORM=VRDGAR>

Bonus Material

Asthma

- Early intubation
- Always consider pneumothorax as a cause
 - If you suspect it or see it on ultrasound, needle decompress!!!!
- If already on a ventilator...
 - Disconnect from ventilator as “gas trapping” may have been the cause
- Consider higher shock energies if initial defibrillation attempts fail
 - Dynamic hyperinflation increases transthoracic impedance

Bonus Material

Pulmonary embolism

- Confirmed PE
 - Systemic thrombolysis, surgical embolectomy, and mechanical embolectomy are reasonable IIa, C-LD
- Suspected PE
 - Systemic thrombolysis may be considered IIb, C-LD

Bonus Material

ECMO/ECPR

- ECMO may be considered
 - Venoarterial extracorporeal membrane oxygenation including bypass
 - Alternative to conventional CPR
 - Refractory arrest when suspected etiology of the cardiac arrest is potentially reversible (e.g. acute CAD, PE, profound hypothermia, myocarditis, toxicologic) during a limited period of mechanical cardiorespiratory support IIb, C-LD
 - ECPR can be used in select patients when local resources can support it. Remember that there is still no high-quality study that compares ECPR to conventional CPR.
 - CHEER (CPR, Hypothermia, ECMO, Early Rerfusion)

Bonus Material

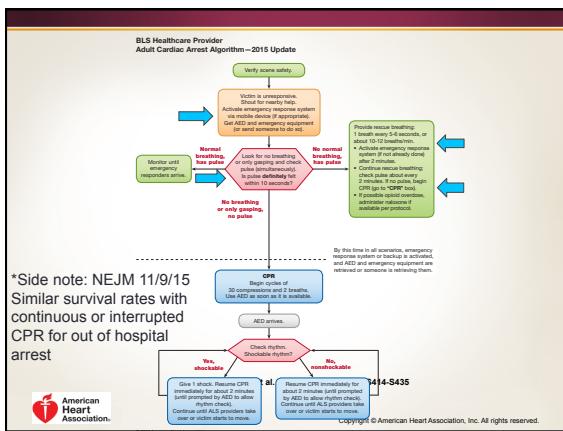
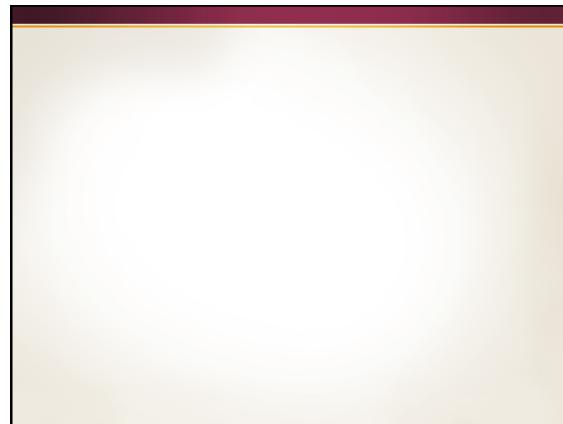
Lipid Emulsion Therapy

- Proposed mechanism:
 - Creates a lipid compartment in the serum sequestering lipophilic medications from the tissues
- Local anesthetic systemic toxicity IIb, C-EO
- Other forms of drug toxicity which failed standard resuscitative measures IIb, C-EO
 - Lipophilic agents such as beta-blockers, calcium channel blockers, herbicides, and psychotropic agents
- Potential concerns
 - Interactions with epinephrine during CPR
 - May interfere with ECMO circuits

Bonus

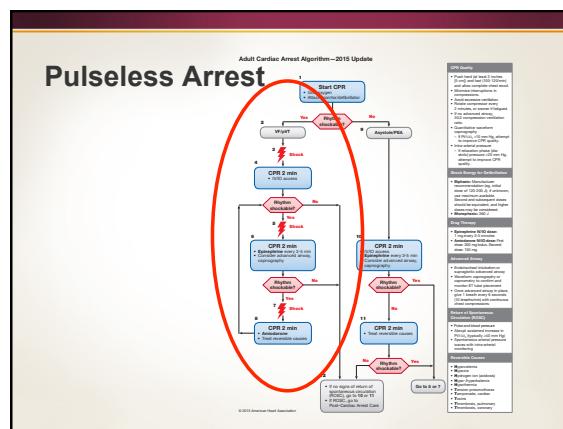
Bonus

- **Social media** is now officially recommended as a method to notify potential rescuers of a cardiac arrest. Several apps are available for download such as [Pulsepoint](#) that will let you know if there is a cardiac arrest nearby.



Bonus

Bonus

- **Regionalized care** for cardiac arrest is also recommended, which involves diverting cardiac arrest patients to specialized centers that provide comprehensive care. This care may include Extracorporeal CPR (ECPR), such as extracorporeal membrane oxygenation, and organ harvesting, both of which are given special attention in this update.



*We also treat the human spirit.**

CPR Quality

- Push hard [at least 2-2.4 inches (5-6 cm)] I, C-LD
- Push fast (100-120/min) IIa, C-LD
- Minimize interruptions in compressions
- Avoid excessive ventilation
- Rotate compressor every 2 minutes
- If no advanced airway, 30:2
- Quantitative waveform capnography
 - If PETCO₂ <10 mm Hg, improve CPR quality
- Intra-arterial pressure
 - If diastolic pressure < 20 mm Hg, improve CPR

VT/VF

*Side note:
Give meds early after shock to circulate them

#ACLS 2015
-Shockable rhythm - insufficient evidence to make a recommendation about the optimal timing of epinephrine administration, defibrillation is a major focus of resuscitation.

#ACLS2015
Total preeshock and postshock pauses should be as short as possible I, C-LD. Target compression fraction $\geq 60\%$

*Side note:
Longer pre-shock pause independently associated with decreased survival

We make things too complicated!

Vinnie Jones CPR

British Heart Foundation

Registered charity in England & Wales (229971) and Scotland (SC039426)

<https://www.youtube.com/watch?v=iLjxfB4zNk>

PUSHING! - CPR

- ▀ The Team, The Team, The Team!
- ▀ Quality
- ▀ Minimize Interruptions

CPR
The Team, The Team, The Team!

Performing CPR is a team sport!

- ▀ Have a game plan and pep talk if possible
- ▀ Communication is key
- ▀ No one likes a ball hog
- ▀ Sometimes a little in game coaching is needed

CPR
Quality

- ▀ How Fast?
 - ▀ 100-120 bpm
 - ▀ What songs work?
 - ▀ "Stayin' Alive" – Bee Gees
 - ▀ "Cecilia" – Simon & Garfunkel
 - ▀ "Rock Your Body" – Justin Timberlake
 - ▀ "I Will Survive" – Gloria Gaynor
 - ▀ "Sweet Home Alabama" – Lynyrd Skynyrd
 - ▀ "Quit Playing Games with My Heart" – Backstreet Boys
 - ▀ "Obladi-Oblada" – The Beatles
 - ▀ "Another One Bites the Dust" – Queen

AND Barbas's PERSONAL FAVOR

A Public Service Announcement from Imperial EMS:

Darth Vader's theme song, The Imperial March, is 104 beats/minute

The perfect tune to hum while you do CPR

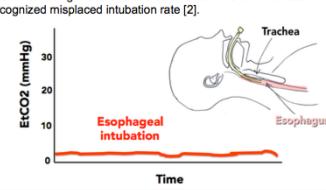
CPR

Quality – End Tidal CO₂

EtCO₂ is a great tool to use during CPR to evaluate quality

Continuous End Tidal CO₂ Monitoring in Cardiac Arrest

Abdullah Bakish, MBBS

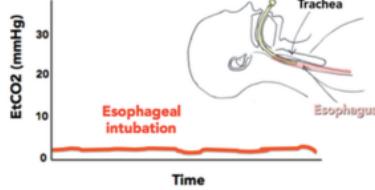

1. Link PMID: 26472995 2. Silvestri, PMID: 15855946
3. Ahrens 11688606; 4. Kleinman PMID: 26472993

Assuming relatively constant ventilation, the partial pressure of end tidal CO₂ (ETCO₂) correlates with cardiac output during CPR.

2015 American Heart Association (AHA) Recommendations

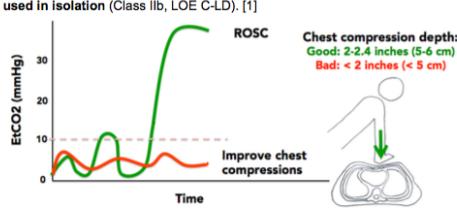
Continuous waveform capnography is recommended in addition to clinical assessment as the most reliable method of confirming and monitoring correct placement of an endotracheal tube (Class I, LOE C-LD). [1]

- No unrecognized misplaced intubation rates were observed with continuous ETCO₂ monitoring. Failure to use continuous ETCO₂ was associated with a 23% unrecognized misplaced intubation rate [2].


<http://www.alien.com/2015/pv-card-continuous-end-tidal-co2-monitoring/>

Assuming relatively constant ventilation, the partial pressure of end tidal CO₂ (ETCO₂) correlates with cardiac output during CPR.

2015 American Heart Association (AHA) Recommendations


Continuous waveform capnography is recommended in addition to clinical assessment as the most reliable method of confirming and monitoring correct placement of an endotracheal tube (Class I, LOE C-LD). [1]

- No unrecognized misplaced intubation rates were observed with continuous ETCO₂ monitoring. Failure to use continuous ETCO₂ was associated with a 23% unrecognized misplaced intubation rate [2].

<http://www.alien.com/2015/pv-card-continuous-end-tidal-co2-monitoring/>

In intubated patients, failure to achieve an ETCO₂ >10 mmHg by waveform capnography after 20 minutes of CPR may be considered as one component of a multimodal approach to decide when to end resuscitative efforts but should not be used in isolation (Class IIb, LOE C-LD). [1]

ROSC

ETCO₂ (mmHg)

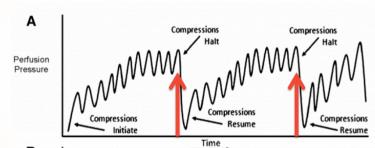
Time

Improve chest compressions

Chest compression depth:
Good: 2-2.4 inches (5-6 cm)
Bad: < 2 inches (< 5 cm)

<http://www.alien.com/2015/pv-card-continuous-end-tidal-co2-monitoring/>

Updated 10/20/15



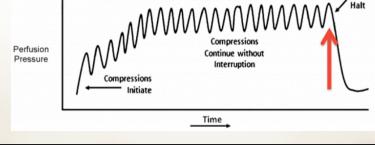
CPR

Minimizing Interruptions

Perfusion During Cardiac Arrest with Chest Compressions

A

Perfusion Pressure


Time

Compression Initiate

Compression Halt

Compression Resume

B

Perfusion Pressure

Time

Compression Initiate

Compression Continue without Interruption

Compression Halt

Shocking! – Defibrillation

Most important aspect of defibrillation/shock is... to minimize preshock and postshock pauses!

- Know your shock energy (depends on your machine)
- Chest compressions while you are charging
- Clear the patient, then shock
- Immediately after, resume compressions for another 2 minutes or 5 cycles

▪ In the beginning, as soon as the pads are on.... **SHOCK THE PATIENT!!!**

- Do not wait 2 minutes/5 cycles to do so

Quick Basics Review

- Pushing!
- Shocking!
- Breathing!

Assessment for the presence or absence of Cardiac Output

- How do we currently assess cardiac output during a code?
- Why is this a bad approach?
 - It's insensitive
 - It isn't specific
 - Inter-rated reliability of pulses is poor
 - Only 78% accurate
- So what?

3. Alternate Framework for H's and T's

We'll get to that in one second.....

H's & T's

...and another way of looking at them

Alternate Framework for H's and T's

- Chaotic to try to remember all of them
- Do we try to fix all of them?
 - Cause it is lengthy and diverse list of treatments!
 - Let's take a look...

Wide Complex PEA Management

Let's talk about meds, baby...

....unless it is actually a narrow complex masked as a wide-complex...

...but seriously let's talk about meds and get back to this later.

Medications Epinephrine

- Alternative
 - Hang Epinephrine drip 0.5mcg/kg/min
 - Advantage #1: Cognitive offloading
 - Advantage #2: Avoidance of post-ROSC drop in BP
 - ★THIS IS STILL BEING STUDIED.★
 - ★DO NOT USE THIS ON EXAMS OR ACLS COURSES.★
- How to Make "Dirty Epi Drip"
 1. Take your code-cart epinephrine
 2. Inject the full 1mg into a 1000ml normal saline bag
Final concentration 1mg/ml
 3. Run wide open until pump and formal bag can arrive

Medications Vasopressin

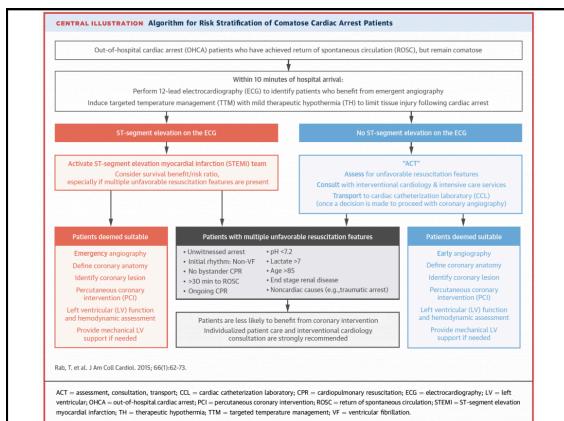
Stop using it per 2015 recommendations

SOOOOOOO...you have done amazing CPR, you may have defibrillated, you oxygenated the patient, you may have given some medications but you definitely ruled out fixable causes, and.....

ETCO₂

- If PETCO₂ abruptly increases to a normal value (35 to 40 mmHg), it is reasonable to consider that this is an indicator of ROSC
- If this is a sudden increase in continuously recorded PETCO₂ by >10 mmHg as an indicator of the possibility of ROSC.

Post Resuscitative Care Hypothermia


▪ ACLS Recommendations

- All patients with post-arrest ROSC but comatose target temperature between 32°C and 36°C for at least 24 hours

Post Resuscitative Care Cardiac Cath

▪ Emergency coronary angiography

- Electrically or hemodynamically unstable adults who are without ST elevation on ECG but are *comatose* after OHCA of suspected cardiac origin. **IIa, B-NR**
- Post-cardiac arrest patients for whom coronary angiography is indicated, *regardless* of whether the patient is comatose or awake. **IIa, C-LD**

SOOOOOOO...you have done amazing CPR, you may have defibrillated, you oxygenated the patient, you may have given some medications but you definitely ruled out fixable causes, and.....

Death Notification

- **Gather:** the family and friends
- **Resources:** Get your team
- **Identify:** yourself, everyone in the room, patient, etc
- **Educate:** Prehospital/ED/Hospital events
- **Verify:** patient has died (don't be vague)
- **_ (insert pause)** allow family time to react
- **Inquire:** if they have questions
- **Nuts&Bolts:** organ donation/funeral, viewing, PCP?
- **Give:** condolences and your contact information

Death Notification

- **Gather:** the family and friends
- **Resources:** Get your team
- **Identify:** yourself, everyone in the room, patient, etc
- **Educate:** Prehospital/ED/Hospital events
- **Verify:** patient has died (don't be vague)
- **_ (insert pause)** allow family time to react
- **Inquire:** if they have questions
- **Nuts&Bolts:** organ donation/funeral, viewing, PCP?
- **Give:** condolences and your contact information

Review

- **The Basics**
 - Pushing, Shocking & Bagging
- **POCUS**
 - Ultrasound will be your friend
- **"H's & T's"**
 - Another way of looking at them
- **Medications?**
 - Epi, Vaso, Amio and others
- **We got 'em back!**
 - Now What?
- **We are not getting 'em back?**
 - Now What?

Resources

- Experience
- American Health Association ACLS protocol
- REBELEM.com
- EMCrit.org
- ALIEM.com
- EMRAP podcast
- Crashingpatient.com
- Their references
- References throughout
- Dr Reed's ACLS talk