ICU Pharmacology

Sean Forsythe M.D.
Associate Professor of Medicine

Sedatives
Analgesics
Paralytics
Pressors

Sedation

- Relieve pain, decrease anxiety and agitation, provide amnesia, reduce patient-ventilator dysynchrony, decrease respiratory muscle oxygen consumption, facilitate nursing care.
- May prolong mechanical ventilation and increase costs.
Goals of Sedation

- Old: Obtundation
- New: Sleepy but arousable patient
- Almost always a combination of anxiolytics and analgesics.

What is Agitation?

- Pain
- Patient-ventilator interactions
- Encephalopathy
- Withdrawal
- Anxiety
- Delirium
- Fear
- Sleep deprivation
- Depression
- ICU psychosis

Benzodiazepeines

- Act as sedative, hypnotic, amnestic, anticonvulsant, anxiolytic.
- No analgesia.
- Develop tolerance.
- Synergistic effect with opiates.
- Lipid soluble, metabolized in the liver, excreted in the urine.
- Interact with erythro, propranolol, theo
Benzodiazepines

- Diazepam (Valium)
 - Repeated dosing leads to accumulation
 - Difficult to use in continuous infusion
- Lorazepam (Ativan)
 - Slowest onset, longest acting
 - Metabolism least affected by liver disease
- Midazolam (Versed)
 - Fast onset, short duration
 - Accumulates when given in infusion >48 hours.

<table>
<thead>
<tr>
<th></th>
<th>Onset</th>
<th>Peak</th>
<th>Equiv. dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazepam (valium)</td>
<td>1-3 min</td>
<td>3-4 min</td>
<td>2-5 mg</td>
</tr>
<tr>
<td>Lorazepam (Ativan)</td>
<td>5-15 min</td>
<td>15-20 min</td>
<td>1-2 mg</td>
</tr>
<tr>
<td>Midazolam (Versed)</td>
<td>1-3 min</td>
<td>5-30 min</td>
<td>1-5 mg</td>
</tr>
</tbody>
</table>

Propofol

- Sedative, anesthetic, amnestic, anticonvulsant
- Respiratory and CV depression
- Highly lipid soluble
- Rapid onset, short duration
 - Onset <1 min, peak 2 min, duration 4-8 min
- Clearance not changed in liver or kidney disease.

Propofol- Side effects

- Apnea, unpredictable respiratory depression
 - May not be all that unpredictable
 - Use only in mechanically ventilated patients
- Hypotension
 - First described in post-op cardiac patients
- Increased triglycerides
 - 1% solution of 10% intralipids
 - Daily tubing changes, dedicated port
Propofol Infusion Syndrome

- Rare and often fatal syndrome described in critically ill children undergoing long-term propofol infusion at high doses
- Cardiac failure, bradycardia, rhabdomyolysis, severe metabolic acidosis and renal failure
- Supportive treatments with catecholamines and corticosteroids act as triggering factor, as can higher doses (> 5 mg/kg/hr), prolonged (>48 h) infusions, use in patients with acute neurological or inflammatory illnesses.

Etomidate

- Sedative, anesthetic
- Used in rapid sequence intubation
- Advantages
 - Rapid onset of action (<60 sec)
 - Reliable pharmacokinetics
 - Cardiovascular stability
- Disadvantages
 - Inhibits adrenal steroidogenesis
 - Etomidate eliminates the adrenal's response to adrenocorticotropic hormone through inhibition of 11-β-hydroxylase, the same enzyme implicated in sepsis-associated adrenal dysfunction

Dexmedetomidine (Precedex)

- α2 agonist, acts of receptors in locus ceruleus and spinal cord
- Sedation through endogenous sleep promoting pathways, analgesia through spinal cord pathways
- No respiratory depression, some bradycardia and vasodilation
- Approved for brief post-op sedation
Butyrophenones

- Haldol
 - Anti-psychotic tranquilizer
 - Slow onset (20 min)
 - Not approved for IV use, but is probably safe
 - No respiratory depression or hypotension.
 - Useful in agitated, delirious, psychotic patients
 - Side effects- QT prolongation, NMS, EPS

Sedation studies

- Propofol vs. midazolam
 - Similar times to sedation, faster wake-up time with propofol AJRCCM, 15:1012, 1996.

- Nursing implemented sedation protocol
 - ↓ duration of mech vent, ↓ ICU stay, ↓ trach rate
 Crit Care Med 27:2609, 1999

- Daily interruption of sedation
 - ↓ duration of mech vent, ↓ ICU LOS, hosp LOS

Sedation studies (cont.)

- Dexmedetomidine vs. midazolam
 - Using Precedex at higher doses and for longer than approved, end point was light sedation.
 - No sedation for critically ill patients receiving mechanical ventilation
Monitoring Sedation

Many scoring systems, none are validated.

Sedation-Agitation Score (SAS)
- +2: Dangerously agitated, does not follow commands, thrashing, pulling at tubes or catheters
- +1: Agitated, but follow commands, asynchronous breathing, persistent coughing or choking
- 0: Calm and follows commands
- -1: Deep sedation, awakens only to noxious stimuli
- -2: Over-sedation, unresponsive to any stimuli

Pain in the ICU

Pain leads to a stress response which causes:
- Catabolism
- Ileus
- ADH release
- Immune dysregulation
- Hypercoaguable state

What causes pain in the ICU?
- Lines
- Tubes
- Underlying illness
- Interventions
- Everything else
Analgesics

- Relieve Pain
- Opioids
- Non-opioids
- Can be given PRN or continuous infusion
 - PRN avoids over sedation, but also has peaks and valleys and is more labor intensive.

Opioids

- Metabolized by the liver, excreted in the urine.
 - Morphine: Potential for histamine release and hypotension.
 - Fentanyl: Lipid soluble, 100X potency of Morphine, more rapid onset, no histamine release, slightly more expensive.
 - Demerol: Not a good analgesic, potential for abuse, hallucinations, metabolites build up and can lead to seizures.

Adverse effects

- Respiratory depression
- Hypotension (sympatholysis, histamine release)
- Decreased GI motility (peripheral effect)
- Pruritus
- Methylnaltrexone: Peripherally acting μ-opioid antagonist
Non-opiodes

Ketamine
- Analog of phencyclidine, sedative and anesthetic, dissociative anesthesia.
- Potent bronchodilator, hypertension, hypertonicity, hallucinations, nightmares.
- Bad side effects can be limited by using with benzos, using at lower doses.
- Emergence phenomena in anesthesia doses
 - 12% of patients
 - Varies from pleasant dream-like state to hallucinations to delirium, confusion, irrational behavior.

Non-opiodes

Ketorolac
- NSAID
- Limited efficacy (post-op ortho)
- Synergistic with opiodes
- No respiratory depression
- Increased side effects in the critically ill
- Renal failure, thrombocytopenia, gastritis

Paralytics

- Paralyze skeletal muscle at the neuromuscular junction.
- They do not provide any analgesia or sedation.
- Prevent examination of the CNS
- Increase risks of DVT, pressure ulcers, nerve compression syndromes.
Use of Paralytics

- Intubation
- Facilitation of mechanical ventilation
- Preventing increases in ICP
- Decreasing metabolic demands (shivering)
- Decreasing lactic acidosis in tetanus, NMS.

Paralytics

- Depolarizing agents
 - Succinylcholine
- Non-depolarizing agents
 - Pancuronium
 - Vecuronium
 - Atracurium

<table>
<thead>
<tr>
<th>Drug</th>
<th>Onset (min)</th>
<th>Duration (min)</th>
<th>Route of elimination</th>
<th>Adjust for renal</th>
<th>Adjust for liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinylcholine</td>
<td>1-1.5</td>
<td>5-10</td>
<td>Acetylcholinesterase</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>1.5-2</td>
<td>60</td>
<td>85% kidney</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>1.5</td>
<td>30</td>
<td>Biliary, liver, kidney</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Atracurium</td>
<td>2</td>
<td>30</td>
<td>Plasma (Hoffman)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>1</td>
<td>30-60</td>
<td>Hepatic</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tubocurarine</td>
<td>5</td>
<td>80</td>
<td>90% kidney</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Paralytics

<table>
<thead>
<tr>
<th>Drug</th>
<th>Advantages</th>
<th>Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinylcholine</td>
<td>rapid onset, short acting</td>
<td>K, ICP, IOP</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>inexpensive, long acting</td>
<td>tachycardia</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>Less CV effects</td>
<td>bradycardia</td>
</tr>
<tr>
<td>Atracurium</td>
<td>Hoffman elim</td>
<td>rash, histamine release</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>No hemodynamic effects</td>
<td>expensive</td>
</tr>
</tbody>
</table>

Complications of Paralysis

- Persistent neuromuscular blockade
 - Drug accumulation in critically ill patients
 - Renal failure and >48 hr infusions raise risk

Post-paralytic syndrome

- Acute myopathy that persists after NMB is gone
- Flaccid paralysis, decreased DTRs, normal sensation, increased CPKs.
- May happen with any of the paralytics
- Combining NMB with high dose steroids may raise the risk.
Monitoring Paralysis

- Observe for movement
- Twitch monitoring, train of four, peripheral nerve stimulation.

Shock

- Hypoperfusion of multiple organ systems.
- May present as tachycardia, tachypnea, altered mental status, decreased urine output, lactic acidosis.
- Not all hypotension is shock and not all shock has hypotension.

Shock

- Rapidity of diagnosis is key.
- The types:
 - Hypovolemic/ hemorrhagic
 - Cardiogenic
 - High output
- Fluid bolus is almost always the correct initial therapy.
Pressors
- β₁ myocardium- contractility
- β₂ arterioles- vasodilation
- β₁ SA node- ↑ chronotropy
- β₂ lungs- bronchodilation
- α peripheral- vasoconstriction

Dopamine (Intropin)
- Dopaminergic {Renal} (2-4 mcg/kg/min)- increase in mesenteric blood flow
- β (5-10 mcg/kg/min)- modest positive inotrope
- α (10-20 mcg/kg/min) vasoconstriction

Dopamine
- "Renal dose" dopamine probably only transiently increases u/o without changing clearance.
- Newer studies suggest it may impair mesenteric perfusion more than norepi
- Use is falling out of favor
- Adverse effects- tachyarrhythmias
Dobutamine (Dobutrex)

- Primarily β1, mild β2.
- Dose dependent increase in stroke volume, accompanied by decreased filling pressures.
- SVR may decrease, baroreceptor mediated in response to ↑ SV.
- BP may or may not change, depending on disease state.

Dopamine vs. Dobutamine in cardiogenic shock

Dobutamine

- Useful in right and left heart failure.
- May be useful in septic shock.
- Dose- 5-15 mcg/kg/min.
- Adverse effects- tachyarrhythmias.
PDE Inhibitors

- Amrinone, Milrinone
- Positive inotrope and vasodilator (systemic and pulmonary).
- Little effect on heart rate.
- Uses: CHF
- AE: arrhythmogenic, thrombocytopenia
- Milrinone dosing: 50mcg/kg bolus, 0.375-0.5 mcg/kg/min infusion.

Norepinephrine (Levophed)

- Potent α and β agent
- Vasoconstriction (that tends to spare the brain and heart).
- Good agent to ↑SVR in high output shock.
- May cause decreased perfusion of kidneys, mesenteric bed (least of all α agents).
- Can cause reflex bradycardia (vagal).

Phenylephrine (Neosynephrine)

- Strong, pure α agent.
- Vasoconstriction with minimal ↑ in heart rate or contractility.
 - Often causes reflex bradycardia
- Does not spare the heart or brain.
- BP at the expense of perfusion.
Epinephrine
- β and α agent.
- More mesenteric ischemia than norepi.
- May have more right heart effects.
- Some effects on metabolic rate, inflammation (Use in anaphylaxis)
- AE- Arrhythmogenic, coronary ischemia, renal vasoconstriction, ↑ metabolic rate.

Ephedrine
- Releases tissue stores of epinephrine.
- Longer lasting, less potent than epi.
- Used mostly by anesthesiologists.
- 5-25 mg IVP.

Vasopressin
- Made in hypothalamus, stored in anterior pituitary. Released in response to hypovolemia, increased osmolality
- V1 receptors on vascular smooth muscles
- Vasoconstrictor that may be useful in septic shock, when added to norepi in fluid resuscitated patients.
- Unclear role in other shock states.
- 0.01 to 0.04 units/min
Labetolol (Normodyne)
- \(\alpha_1\) and non-selective \(\beta\) blocker.
- Dose related decrease in SVR and BP without tachycardia.
- Does not ↑ICP
- Useful in the treatment of hypertensive emergencies, aortic dissection.
- Bolus = 20mg, infusion = 2mg/min.

Nitroglycerine
- Venodilator at low doses (<40mcg/min)
- Arteriolar dilation at high doses (>200 mcg/min).
- Rapid onset, short duration, tolerance.
- AE- inhibits platelet aggregation, ↑ICP, headache.

Nitroprusside (Nipride)
- Balanced vasodilator
- Rapid onset, short elimination time
- Useful in hypertensive emergency, severe CHF, aortic dissection
- Accumulates in renal and liver dysfunction.
- Toxicity= CN poisoning (decreased CO, lactic acidosis, seizures).
Nitroprusside

- Dosing: 0.2-10 mcg/kg/min
- Other AE: ↑ICP

Types of Shock

- Hypovolemic
- Cardiogenic
- High output

Hypovolemic Shock

- Cold and clammy, thready pulse, clear lungs.
- GI bleeds, trauma, dehydration.
- Treatment: Volume, volume, volume
Cardiogenic Shock

- Cold and clammy, thready pulse, crackles, S3.
- Left heart failure, right heart failure, valvular disease.
- Treatment: preload reduction (diuretics), afterload reduction (ACE-I), increase contractility (PDE inhibitor, dobutamine)

High Output Shock

- Warm and well perfused, bounding pulses
- Sepsis, sepsis, sepsis, and then other things
- Treatment: Volume first, then norepi, vasopressin or dobutamine as second agent.