Mentoring: The challenge of looking at something familiar and seeing it in a new way

Katherine L. Knight, Ph.D.
Sheila Crumrine, M.A.

U. Mass
May 2012
Outline

• Goal of mentoring
• Instructional vs relational mentoring
• Challenges for mentors and students
• Helping students
 • Competing motives of mentors
 • Student experiences
• Key concepts for relational mentoring
• Take home message(s)
Mentoring

Importance:
- Key to developing the next generation of scientists.

Goal:
- Help students to develop a scientific mind
Mentoring – Two Dimensions

Instructional and Relational: Synergistic

Instructional:
Content and task driven

Relational:
The immediate and long-term primary focus is always the relationship between the mentor and student

Instructional = Content
Relational = Process
Challenges Faced in Mentoring

Students:

• Mentor doesn’t have time for me
• I’m not allowed to explore my own ideas
• I always have to do what the mentor wants
• Mentor doesn’t listen to or respect my ideas
• Expected to work on other projects
• Competing with post-doc
• I need to have more publications
• My mentor plays favorites
Challenges Faced in Mentoring

Faculty experience that students:

• Don’t listen
• Want to follow their own ideas
• Disagree with our view of the best next step
• Don’t get along with lab mates
• Hesitate to do next obvious experiment
Challenges Faced in Mentoring

Most importantly... we have difficulty balancing our time: Teaching, writing grants, committee meetings, family, etc.
Helping Students

Students need:

• To have the experience that they are driving the process- it is their motive

Students don’t need:

• To be told continuously what to do
• To be criticized
Helping Students

Two responses to student with failed experiment

1. “Clearly you used the wrong buffer, and so of course, the proteins won’t migrate properly”
 Leaves student feeling criticized (not helpful)

2. “Why do you think the experiment didn’t work?”
 Helps student grow scientifically
Competing Demands

Basic conflict between advancing our own agenda (publications and grants), and having the best interest of the student in mind.
Competing Motives

Mentoring and self-caretaking motives seem to be in competition

“How can we take care of ourselves, and simultaneously take care of our students?”

There is no single right answer
Helping Students

…“Why am I helping the student?

Two different motives:

- Professional caregiving motives
- Personal motives

We can help a student make their first Research-in-Progress presentation as a result of our caregiving motive, or because we want her to give a good reflection for our lab. Even though the idea to help the student is the same, her experience will be very different if the primary motive is to take care of her instead of taking care of ourselves (our lab).
Helping Students – Student’s Experience

Two very different experiences:

- Internalizing process promotes confidence
- Feels anxious
Key Concepts for Relational Mentoring

• Listening and responding

• Consistently positive responses
Example:
Three different types of students

- Joe – the shy one who forgot to add protease inhibitor to the sample
- Abigail – the headstrong one who says “I did it correctly, but it didn’t work”
- Ethan – the usually competent one who was upset about a failed experiment
Tension between Student’s and Mentor’s needs

Joe – dialogue and listen

Abigail – perhaps not give her the experiment?

Ethan – recognize own frustration; then strategize with him about options
Key Concepts for Relational Mentoring

- Listening and responding
- Consistently positive responses
- Trust
- Facilitating development of scientific mind
- Knowing when to offer help
Big Picture - Key Concept

We have a responsibility to maintain the standards of the field and

... by doing this our students will uphold high standards throughout their careers and pass them along to the next generation of scientists.
Take Home Message

Rather than interfering with one’s own career, relational mentoring will greatly enhance it, and, at the same time, greatly enhance the educational experience of the student…

…and the future of science.